4.7 Article

Rotenone impairs learning and memory in mice through microglia-mediated blood brain barrier disruption and neuronal apoptosis

期刊

CHEMOSPHERE
卷 291, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132982

关键词

Pesticide; Rotenone; Blood brain barrier; Neuroinflammation; Cognitive impairments; Matrix metalloproteinases

资金

  1. National Natural Science Foundation of China [81973087]
  2. Liaoning Provincial Natural Science Foundation of China [2019-MS-077, 2020-MS-264]
  3. LiaoNing Revitalization Talents Program [XLYC2007151, XLYC1907026]

向作者/读者索取更多资源

This study reveals that rotenone induces cognitive impairments in mice through microglia-mediated blood brain barrier disruption and neuronal apoptosis via MMP-2/-9, providing a novel aspect for the pathogenesis of pesticide-induced neurotoxicity and Parkinson's disease-related dementia.
Rotenone is a neurotoxic pesticide widely used in agriculture. Dopaminergic neuron has long been considered as the target of rotenone. We recently reported that rotenone exposure also resulted in hippocampal and cortical neurodegeneration and cognitive dysfunction in mice. However, the mechanisms remain unknown. Here, we elucidated whether blood brain barrier (BBB) disruption and subsequent neuronal apoptosis mediated by microglial activation were involved in rotenone-elicited cognitive impairments. Results showed that rotenone dose-dependently elevated evens blue extravasation, fibrinogen accumulation and reduced expressions of tight junction proteins in the hippocampus and cortex of mice. Interestingly, microglial depletion and inactivation by PLX3397 and minocycline, respectively, markedly attenuated rotenone-elicited increase of BBB permeability, indicating a critical role of microglia. Furthermore, microglial depletion and inactivation were shown to abrogate rotenone-induced activation of matrix metalloproteinases 2 and 9 (MMP-2/-9), two important factors to regulate tight junction degradation and BBB permeability, in mice. Moreover, SB-3CT, a widely used MMP-2/-9 inhibitor, increased BBB integrity and simultaneously elevated expressions of tight junction proteins in rotenone- intoxicated mice. Finally, we found that SB-3CT significantly mitigated rotenone-induced neuronal apoptosis and synaptic loss as well as learning and memory impairments in mice. Altogether, this study revealed that rotenone elicited cognitive impairments in mice through microglia-mediated BBB disruption and neuronal apoptosis via MMP-2/-9, providing a novel aspect for the pathogenesis of pesticide-induced neurotoxicity and Parkinson's disease (PD)-related dementia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据