4.7 Article

Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism

期刊

CHEMOSPHERE
卷 291, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132941

关键词

Nanotoxicology; Nanotechnology; Ecotoxicology; Crustacean; Zooplankton; Review

资金

  1. Department of Forestry and Natural Resources, Purdue University
  2. China Scholarship Council [201906140200]

向作者/读者索取更多资源

Nanoparticle production is increasing rapidly due to its wide applications, but concerns over their environmental impact arise from their inevitable release into the environment. The microcrustacean Daphnia spp. has emerged as an important freshwater model organism for nanotoxicity studies due to its biological properties and high sensitivity to environmental contaminants and stressors.
Nanoparticle production is on the rise due to its many uses in the burgeoning nanotechnology industry. Although nanoparticles have growing applications, there is great concern over their environmental impact due to their inevitable release into the environment. With uncertainty of environmental concentration and risk to aquatic organisms, the microcrustacean Daphnia spp. has emerged as an important freshwater model organism for risk assessment of nanoparticles because of its biological properties, including parthenogenetic reproduction; small size and short generation time; wide range of endpoints for ecotoxicological studies; known genome, useful for providing mechanistic information; and high sensitivity to environmental contaminants and other stressors. In this review, we (1) highlight the advantages of using Daphnia as an experimental model organism for nanotoxicity studies, (2) summarize the impacts of nanoparticle physicochemical characteristics on toxicity in relation to Daphnia, and (3) summarize the effects of nanoparticles (including nanoplastics) on Daphnia as well as mechanisms of toxicity, and (4) highlight research uncertainties and recommend future directions necessary to develop a deeper understanding of the fate and toxicity of nanoparticles and for the development of safer and more sustainable nanotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据