4.7 Article

Microalgal mediated antibiotic co-metabolism: Kinetics, transformation products and pathways

期刊

CHEMOSPHERE
卷 292, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.133438

关键词

Antibiotics; Chlorella vulgaris; Effects-response; Logistic model; Monod model; Biotransformation intermediates

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA23020500]
  2. National Natural Science Foundation of China [U1805244, 31870475]

向作者/读者索取更多资源

This study investigated the interaction between Chlorella vulgaris microalgae and four antibiotics. The results showed that the mixture of antibiotics inhibited algal growth, but had higher removal efficiency compared to single antibiotics. The study also found that C. vulgaris has the potential to be used in antibiotic removal.
The mutual interaction of a microalga Chlorella vulgaris with four antibiotics viz. sulfamethoxazole (SMX), trimethoprim (TMP), azithromycin (AZI), and levofloxacin (LEV) individually and in mixture was studied in batch culture. SMX, TMP, and LEV stimulated algal growth, while AZI inhibited its growth. The Combination Index (CI)-isobologram indicated antagonism of the antibiotic mixture on the growth of C. vulgaris. Higher removal efficiency was observed in the mixed antibiotic than in the single antibiotic batch cultures. Biodegradation was the main antibiotic removal mechanism with a similar antibiotic biosorption pattern in single and mix antibiotic cultures. Scanning electron microscopy and Fourier transform infrared spectrophotometry showed minor biochemical alterations on algal cells surface and a stable algal population. Monod kinetics model was successfully applied to understand the growth with respect to the removal efficiency of C. vulgaris in single and mix antibiotic batch cultures. Results indicated relatively higher specific growth rate in the mix antibiotic batch culture with removal efficiency in the order of SMX > LEV > TMP > AZI. In total, 46 metabolites with 18 novel ones of the four antibiotics were identified by using high-resolution mass spectrometry based on the suspect screening approach to propose the potential transformation pathways. Most of the transformation products demonstrated lower toxicity than their respective parents. These findings implied that C. vulgaris could be an outstanding candidate for advanced treatment of antibiotic removal in wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据