4.8 Review

Continuum Modeling of Porous Electrodes for Electrochemical Synthesis

期刊

CHEMICAL REVIEWS
卷 122, 期 12, 页码 11022-11084

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.1c00901

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub [DE-SC0021266]
  2. National Science Foundation Graduate Research Fellowship [DGE 1752814]
  3. National Defense Science and Engineering Graduate (NDSEG) Fellowship Program - Army Research Office (ARO)

向作者/读者索取更多资源

Electrochemical synthesis using renewable energy to convert feedstocks into chemicals and fuels is promising, but understanding phenomena in porous electrode systems is challenging. Continuum modeling aids in understanding observed behaviors and guiding next-generation device design. Simulating multiscale phenomena in porous electrodes helps understand and improve the performance of electrochemical synthesis devices.
Electrochemical synthesis possesses substantial promise to utilize renewable energy sources to power the conversion of abundant feedstocks to value-added commodity chemicals and fuels. Of the potential system architectures for these processes, only systems employing 3-D structured porous electrodes have the capacity to achieve the high rates of conversion necessary for industrial scale. However, the phenomena and environments in these systems are not well understood and are challenging to probe experimentally. Fortunately, continuum modeling is well-suited to rationalize the observed behavior in electrochemical synthesis, as well as to ultimately provide recommendations for guiding the design of next-generation devices and components. In this review, we begin by presenting an historical review of modeling of porous electrode systems, with the aim of showing how past knowledge of macroscale modeling can contribute to the rising challenge of electrochemical synthesis. We then present a detailed overview of the governing physics and assumptions required to simulate porous electrode systems for electrochemical synthesis. Leveraging the developed understanding of porous-electrode theory, we survey and discuss the present literature reports on simulating multiscale phenomena in porous electrodes in order to demonstrate their relevance to understanding and improving the performance of devices for electrochemical synthesis. Lastly, we provide our perspectives regarding future directions in the development of models that can most accurately describe and predict the performance of such devices and discuss the best potential applications of future models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据