4.8 Review

Modeling Operando Electrochemical CO2 Reduction

期刊

CHEMICAL REVIEWS
卷 122, 期 12, 页码 11085-11130

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.1c00690

关键词

-

资金

  1. Spanish Ministry of Science and Innovation [RTI2018-101394-B-I00]
  2. European Union [754510, 862453]

向作者/读者索取更多资源

This study reviews recent progress in computational modeling of electrocatalytic systems, focusing on electrochemical CO2 reduction and hydrogen evolution. Novel approaches such as ab initio calculations and machine learning have been employed to partially reproduce surface reconstruction and interpret experimental data, providing insights for future research directions.
Since the seminal works on the application of density functional theory and the computational hydrogen electrode to electrochemical CO2 reduction (eCO2R) and hydrogen evolution (HER), the modeling of both reactions has quickly evolved for the last two decades. Formulation of thermodynamic and kinetic linear scaling relationships for key intermediates on crystalline materials have led to the definition of activity volcano plots, overpotential diagrams, and full exploitation of these theoretical outcomes at laboratory scale. However, recent studies hint at the role of morphological changes and short-lived intermediates in ruling the catalytic performance under operating conditions, further raising the bar for the modeling of electrocatalytic systems. Here, we highlight some novel methodological approaches employed to address eCO2R and HER reactions. Moving from the atomic scale to the bulk electrolyte, we first show how ab initio and machine learning methodologies can partially reproduce surface reconstruction under operation, thus identifying active sites and reaction mechanisms if coupled with microkinetic modeling. Later, we introduce the potential of density functional theory and machine learning to interpret data from Operando spectroelectrochemical techniques, such as Raman spectroscopy and extended X-ray absorption fine structure characterization. Next, we review the role of electrolyte and mass transport effects. Finally, we suggest further challenges for computational modeling in the near future as well as our perspective on the directions to follow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据