4.7 Article

Degradation of sulfamethoxazole (SMX) by water falling film DBD Plasma/Persulfate: Reactive species identification and their role in SMX degradation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 431, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.133916

关键词

Discharge plasma; Persulfate; Sulfate radical; Hydroxyl radical; Superoxide anion radical; Antibiotics

资金

  1. National Natural Science Foundation of China [51977024, 21577011]

向作者/读者索取更多资源

The study shows that persulfate can enhance the degradation of sulfamethoxazole in a water falling film dielectric barrier discharge plasma reactor, with PMS performing better than PDS. Increasing the applied voltage, solution pH, and PMS/PDS concentration promotes SMX degradation. The reactive species generated from the activation of PMS/PDS by discharge plasma play a key role in SMX degradation, with center dot OH and SO4 center dot- being particularly important.
The performance and mechanism of persulfate on improving the degradation of sulfamethoxazole (SMX) in a water falling film dielectric barrier discharge (DBD) plasma reactor have been studied. Both peroxymonosulfate (PMS) and peroxydisulfate (PDS) improved the degradation and mineralization of SMX, but PMS presented higher SMX degradation than PDS. Moreover, increases in applied voltage, solution pH and PMS/PDS concentration promoted SMX degradation. The reactive species were qualitatively and quantitatively detected by electron paramagnetic resonance (EPR) spectra and chemical probes. The results show that the activation process of PMS/PDS by discharge plasma produced reactive radicals including center dot OH and SO4 center dot-, and PMS led to higher aqueous O-3 and center dot OH concentrations than PDS; scavengers of center dot OH, SO4 center dot-, O-2(center dot-) and O-1(2) in SMX solution decreased SMX degradation, but scavengers of hydrated electrons and H center dot in SMX solution had little effect on SMX degradation. The detected degradation products of SMX included 5-amino-3-methylisoxazole, 4-aminobenzenesulfonic acid, nitrosobenzene and 4-nitro sulfamethoxazole, etc., and the calculation results show that most of these products had lower toxicities than SMX. Our study indicates that the combination of DBD plasma and PMS/PDS is an efficient pretreatment method for bio-treatment of refractory SMX.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据