4.7 Article

Dopant-dependent thermoelectric performance of indoloindole-selenophene based conjugated polymer

期刊

CHEMICAL ENGINEERING JOURNAL
卷 431, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.133779

关键词

Conjugated polymer; Molecular dopant; Doping mechanism; Organic conductor; Organic thermoelectrics

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2021R1A2C4002030, NRF-2021R1A2C1007304]
  2. Korea Institute for Advancement of Technology (KIAT) - Korea Government (MOTIE) [P0012770]

向作者/读者索取更多资源

This study synthesized a new conjugated polymer with efficient doping using both electron acceptor and Lewis acid type dopants, achieving high electrical conductivities. The interaction between the electron-donating atoms in the doped polymer and the dopants influenced the conductive properties and stability.
The development of organic conductors, which exhibit high electrical conductivity through chemical doping using non-acidic molecular dopants, has been challenging because of inefficient generation of free charge carriers. In this study, we synthesized a new conjugated polymer (CP) containing electron-donating indoloindole and biselenophene to devise an efficient doping platform. When the synthesized CPs were doped with electron acceptor (F4TCNQ) and Lewis acid (AuCl3) type dopants, both dopants realized high electrical conductivities (184 S.cm(-1) for F4TCNQ and 283 S.cm(-1) for AuCl3). Furthermore, the binding energies of the electron-donating atoms in the doped CPs and the degree of stabilization energy before/after doping indicated that Se and N atoms tended to interact more favorably with F4TCNQ and AuCl3 , respectively. However, the Seebeck coefficient and power factor of the AuCl3-doped CP were lower than those of the F4TCNQ-doped CP, which was attributed to the larger amount of charge carriers generated by the AuCl3 dopant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据