4.7 Article

Rechargeable sunlight-promoted Zn-air battery constructed by bifunctional oxygen photoelectrodes: Energy-band switching between ZnO/Cu2O and ZnO/CuO in charge-discharge cycles

期刊

CHEMICAL ENGINEERING JOURNAL
卷 433, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.133559

关键词

Sunlight promotion strategy; Bifunctional catalyst; ZnO/CuO heterostructure; Zn-air battery

资金

  1. National Natural Science Foundation of China [51773085, 52071171, 21902067]
  2. Natural Science Fund of Liaoning University [LDGY2019016]
  3. Liaoning Bai-QianWan Talents Program [LNBQW2018B0048]
  4. Natural Science Fund of Liaoning Province for Excellent Young Scholars [2019-YQ-04]
  5. Key Project of Scientific Research of the Education Department of Liaoning Province [LZD201902]
  6. Australian Research Council (ARC) [FT210100298]
  7. CSIRO Energy Centre Kick-Start Program
  8. Victorian Governments
  9. Liaoning Revitalization Talents Program-Pan Deng Scholars [XLYC1802005]

向作者/读者索取更多资源

This study successfully achieved low charge potential and high discharge potential in rechargeable Zn-air batteries by constructing highly efficient and stable bifunctional photoelectrodes. The investigation revealed the electrocatalytic mechanism involved, providing new insights for the development of other photo-assisted batteries.
Effective utilization of solar energy in battery systems has become an active attractive and active research in the field of green energy. Herein, highly efficient and stable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) photoelectrodes are constructed for rechargeable Zn-air batteries. This work introduces a simple and efficient method for designing bifunctional ZnO/CuO composite materials with impressive photocatalytic activity, superhydrophilicity and excellent stability. Through the strategy of sunlight promotion, the ZnO/CuO photoelectrodes are used in the charging and discharging processes of Zn-air batteries, achieving low charge potential and high discharge potential of around 1.50 V and 1.28 V by galvanostatic charge and discharge, respectively. Under illumination, the short-circuit current and open-circuit voltage can reach up to 49 mA cm(-2) and 0.9 V, respectively. We revealed that this bifunctionality is originated from the valence change mechanism of Cu, meaning that ZnO/Cu2O and ZnO/CuO play the photoelectric catalytic roles in charge and discharge processes, respectively. This work paves the way to introduce a facile and efficient method for the development of integrated single-cell photo-assisted Zn-air batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据