4.7 Article

Phytic acid conversion film interfacial engineering for stabilizing zinc metal anode

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Review Chemistry, Multidisciplinary

Design Strategies for High-Energy-Density Aqueous Zinc Batteries

Pengchao Ruan et al.

Summary: This review comprehensively summarizes the rational design strategies of high-energy-density zinc batteries, critically analyzes the positive effects and potential issues of these strategies, and outlines the challenges and perspectives for further development.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Review Nanoscience & Nanotechnology

Interfacial Engineering Strategy for High-Performance Zn Metal Anodes

Bin Li et al.

Summary: This article reviews the role of interfacial engineering in inhibiting the growth of Zn dendrites and the occurrence of side reactions. Researchers have regulated the deposition behavior of Zn ions through surface modification and the addition of electrolyte additives to achieve uniform Zn nucleation and flat Zn deposition, improving the cycling stability of Zn anodes.

NANO-MICRO LETTERS (2022)

Article Chemistry, Multidisciplinary

Fast-Charging and Ultrahigh-Capacity Zinc Metal Anode for High-Performance Aqueous Zinc-Ion Batteries

Penghui Cao et al.

Summary: By utilizing a zinc phosphorus solid solution alloy coated on zinc foil as the anode, the study achieved successful cycling at high current density and large areal capacity, demonstrating the potential for large-scale application of aqueous zinc-ion batteries in high-power devices.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Nanoscience & Nanotechnology

Simultaneously Regulating Uniform Zn2+ Flux and Electron Conduction by MOF/rGO Interlayers for High-Performance Zn Anodes

Ziqi Wang et al.

Summary: This study presents a Janus separator based on a Zn-ion conductive metal-organic framework (MOF) and reduced graphene oxide (rGO), which can simultaneously regulate uniform Zn2+ flux and electron conduction during battery operation, effectively improving the stability and corrosion issues of Zn anodes.

NANO-MICRO LETTERS (2021)

Article Chemistry, Physical

Ultrafast Zinc-Ion-Conductor Interface toward High-Rate and Stable Zinc Metal Batteries

Huibo Yan et al.

Summary: A Zn-based montmorillonite interlayer was constructed to improve the performance of rechargeable aqueous zinc ion batteries, including alleviating corrosion, suppressing dendritic growth, and stabilizing capacity. Experimental results demonstrated that under the designed MMT-Zn coating, the batteries exhibited stable performance and long cycle life.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Stabilization of Zn Metal Anode through Surface Reconstruction of a Cerium-Based Conversion Film

Canbin Deng et al.

Summary: The surface of the Zn metal anode is reconstructed by a cerium-based conversion film (Zn@CCF), effectively preventing rapid growth of the film near zinc grain boundaries, resulting in long lifespan and low polarization power. This research helps suppress zinc dendrite formation and underscores the importance of surface reconstruction of the Zn metal anode for corrosion inhibition.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Stabilizing Zinc Anodes by Regulating the Electrical Double Layer with Saccharin Anions

Cong Huang et al.

Summary: The research shows that saccharin (Sac) as an electrolyte additive can regulate the electrical double layer (EDL) structure on the zinc anode, forming a unique solid electrolyte interphase (SEI) that effectively modulates zinc deposition behavior and prevents side reactions, thus improving battery performance.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive

Peng Sun et al.

Summary: The addition of glucose in ZnSO4 electrolyte can improve the performance of Zn ion batteries by suppressing Zn dendrite growth and side reactions, enhancing stability.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Insight into the Critical Role of Surface Hydrophilicity for Dendrite-Free Zinc Metal Anodes

Sung Hyun Park et al.

Summary: The study successfully stabilized zinc (Zn) metal anodes by building a thin and hydrophilic artificial solid electrolyte interphase (SEI) layer, which effectively inhibits parasitic side reactions and zinc dendrite growth, achieving durable cycle stability and showing promise for developing large-scale aqueous zinc-ion batteries (ZIBs).

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries

Huijun Yang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Nanoscience & Nanotechnology

Superfine MnO2 Nanowires with Rich Defects Toward Boosted Zinc Ion Storage Performance

Jinjin Wang et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Multidisciplinary

Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries

Junnan Hao et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes

Chao Li et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries

Junnan Hao et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Physical

Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries

Zhao Cai et al.

ENERGY STORAGE MATERIALS (2020)

Article Chemistry, Multidisciplinary

Advanced Filter Membrane Separator for Aqueous Zinc-Ion Batteries

Yao Qin et al.

Article Energy & Fuels

Realizing high zinc reversibility in rechargeable batteries

Lin Ma et al.

NATURE ENERGY (2020)

Article Chemistry, Physical

A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode

Jin Cao et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Multidisciplinary

Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes

Xuesong Xie et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive

Qi Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Multidisciplinary Sciences

Reversible epitaxial electrodeposition of metals in battery anodes

Jingxu Zheng et al.

SCIENCE (2019)

Review Chemistry, Multidisciplinary

Issues and opportunities facing aqueous zinc-ion batteries

Boya Tang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)

Review Chemistry, Multidisciplinary

Recent Advances in Zn-Ion Batteries

Ming Song et al.

ADVANCED FUNCTIONAL MATERIALS (2018)

Review Chemistry, Physical

Progress in aqueous rechargeable batteries

Jilei Liu et al.

GREEN ENERGY & ENVIRONMENT (2018)

Article Materials Science, Coatings & Films

Effect of zinc ion on the microstructure and electrochemical behavior of phytic acid based conversion coatings on Q235 steels

Xiang Gao et al.

SURFACE & COATINGS TECHNOLOGY (2017)

Article Chemistry, Multidisciplinary

Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations

Miao Liu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2015)

Article Materials Science, Coatings & Films

Phytic acid conversion coating on AZ31B magnesium alloy

H. F. Gao et al.

SURFACE ENGINEERING (2012)

Article Chemistry, Physical

Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

Xiufang Cui et al.

APPLIED SURFACE SCIENCE (2008)