4.7 Article

Increased SPON1 promotes pancreatic ductal adenocarcinoma progression by enhancing IL-6 trans-signalling

期刊

CELL PROLIFERATION
卷 55, 期 5, 页码 -

出版社

WILEY
DOI: 10.1111/cpr.13237

关键词

-

资金

  1. National Natural Science Foundation of China [81874175, 81802317, 81902377, 81702844, 81702726]

向作者/读者索取更多资源

This study found that SPON1 is significantly upregulated in pancreatic ductal adenocarcinoma (PDAC) and promotes tumor growth and development by activating the sIL-6R/gp130/STAT3 pathway. These results suggest that SPON1 may be a potential therapy target for PDAC patients.
Objectives This study investigated the specific molecular mechanism and the roles of extracellular matrix protein Spondin 1 (SPON1) in the development of pancreatic ductal adenocarcinoma (PDAC). Materials and Methods The expression pattern and clinical relevance of SPON1 was determined in GEO, Ren Ji and TCGA datasets, further validated by immunohistochemical staining and Kaplan-Meier analysis. Loss and gain of function experiments were employed to investigate the cellular function of SPON1 in vitro. Gene set enrichment analysis, luciferase assay, immunofluorescence and Western blot and immunoprecipitation were applied to reveal the underlying molecular mechanisms. Subcutaneous xenograft model was used to test the role of SPON1 in tumour growth and maintenance in vivo. Results SPON1 is significantly upregulated in PDAC tumour tissues and correlated with progression of PDAC. Loss and gain of function experiments showed that SPON1 promotes the growth and colony formation ability of pancreatic cancer cells. Combining bioinformatics assays and experimental signalling evidences, we found that SPON1 can enhance the IL-6/JAK/STAT3 signalling. Mechanistically, SPON1 exerts its oncogenic roles in pancreatic cancer by maintaining IL-6R trans-signalling through stabilizing the interaction of soluble IL-6R (sIL-6R) and glycoprotein-130 (gp130) in PDAC cells. Furthermore, SPON1 depletion greatly reduced the tumour burden, exerted positive effect with gemcitabine, prolonging PDAC mice overall survival. Conclusions Our data indicate that SPON1 expression is dramatically increased in PDAC and that SPON1 promotes tumorigenicity by activating the sIL-6R/gp130/STAT3 axis. Collectively, our current work suggests SPON1 may be a potential therapy target for PDAC patient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据