4.4 Article

Streptococcus mutans Gene Expression and Functional Profile in Root Caries: An RNA-Seq Study

期刊

CARIES RESEARCH
卷 56, 期 2, 页码 116-128

出版社

KARGER
DOI: 10.1159/000524196

关键词

Biofilms; Microbiology; RNA-seq; Root caries; Streptococcus mutans

资金

  1. Dunhill Medical Trust [R245/0212]
  2. Leeds Teaching Hospitals Charitable Foundation Trust [RD/PP/12011]

向作者/读者索取更多资源

This study investigated the gene expression and functional profile of Streptococcus mutans in biofilms from sound root surfaces (SRS) and carious root surfaces (RC). The results showed that there were differentially expressed genes between SRS and RC, with a greater functional abundance of S. mutans in the carious lesion samples. Functional patterns related to sugar metabolism, cell-wall biosynthesis, and acid tolerance stress were enriched on carious root surfaces.
The literature is still scarce on studies describing Streptococcus mutans global gene expression under clinical conditions such as those found on complex biofilms from sound root surfaces (SRS) and carious root surfaces (RC). This study aimed to investigate the S. mutans gene expression and functional profile within the metatranscriptome of biofilms from SRS and from RC in an attempt to identify enriched functional signatures potentially associated with the healthy-to-disease transitioning process. Total RNA was extracted, and prepared libraries (SRS = 10 and RC = 9) were paired-end sequenced using the Illumina HiSeq2500. A read count assigned to each gene of the S. mutans UA159 strain was obtained. Differentially expressed genes (DEG) between SRS and RC were identified using the DESeq2 R package, and weighted gene co-expression network analysis (WGCNA) was performed to explore and identify functional modules related to SRS and RC. We found seventeen DEG between SRS and RC samples, with three overexpressed in RC and related to membrane protein, alanyl-tRNA synthetase, and GTP-binding protein, with the remaining ones overexpressed in SRS samples and related to hypothetical protein, transposon integrase, histidine kinase, putative transporter, bacteriocin immunity protein, response regulator, 6-phospho-beta-galactosidase, purine metabolism, and transcriptional regulator. Key-functional modules were identified for SRS and RC conditions based on WGCNA, being 139 hub genes found on SRS key-module and 17 genes on RC keymodule. Functional analysis of S. mutans within the metatranscriptome of biofilms from sound root and from carious root revealed a similar pattern of gene expression, and only a few genes have been differentially expressed between biofilms from SRS and those from root carious lesions. However, S. mutans presented a greater functional abundance in the carious lesion samples. Some functional patterns related to sugar (starch, sucrose, fructose, mannose, and lactose) and heterofermentative metabolisms, to cell-wall biosynthesis, and to acid tolerance stress seem to be enriched on carious root surfaces, conferring ecological advantages to S. mutans. Altogether, the present data suggest that a functional signature may be associated with carious root lesions. (C) 2022 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据