4.7 Article

Vegetative and thermal performance of an extensive vegetated roof located in the urban heat island of a semiarid region

期刊

BUILDING AND ENVIRONMENT
卷 212, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2022.108791

关键词

Native germplasm; Species combinations; Thermal performance; Cordoba city; Urban ecosystems

资金

  1. Cordoba Development Agency (ADEC)
  2. Universidad Nacional de Cordoba (UNC)

向作者/读者索取更多资源

Vegetated roofs reduce temperature and heat flow fluctuations, mitigating urban heat island effects and providing ecosystem services. The study found that diverse plant arrangements perform best in reducing temperature and heat flow fluctuations.
Vegetated roofs reduce temperature and heat flow fluctuations on the building's surface mitigating the urban heat island effects and improving other ecosystem services. The objectives of this work were to quantify thermal reduction and to evaluate the performance of vegetated-microcosm treatments during 15 months with different species composition and growth form combinations. Our results showed considerable attenuation of temperature through the whole system of extensive green roofs (EVRs) in both summer and winter periods. The EVRs decreased the outside temperature from 44.6 ? to 34.7 ?. Temperatures for the EVR showed a lower peak-to-valley-gap and better anti-interference performance during the day and along the year. At the same time, thermal insulation provided by soil and vegetation layers resulted in a negative heat flux (-40 W/m(2)) reducing the incoming heat flux during the day. Almost all treatments showed >= 90% of plant survival and >= 60% of coverage after the experimental period. Microcosm treatments with the highest diversity showed the best performance in both the short and long terms (particularly those with the native Eustachys distichophylla and the exotic Sedum spp.). Consequently, diverse plant arrangements are recommended when designing EVRs in semi-arid climates because they show a better performance in mitigating urban heat island effects by reducing temperature and heat flow fluctuations and also because they provide ecosystem services in urban environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据