4.7 Article

Substitution of SERCA2 Cys674 accelerates aortic aneurysm by inducing endoplasmic reticulum stress and promoting cell apoptosis

期刊

BRITISH JOURNAL OF PHARMACOLOGY
卷 179, 期 17, 页码 4423-4439

出版社

WILEY
DOI: 10.1111/bph.15864

关键词

aortic aneurysm; apoptosis; endoplasmic reticulum stress; phenotypic transition; SERCA2 Cys(674); smooth muscle cells

资金

  1. Fundamental Research Funds for the Central Universities [2018CDQYYX0042, 2018CDYXYX0027]
  2. National Natural Science Foundation of China [31571172, 81700237, 81870343]
  3. BHF Project [PG/21/10595]
  4. BHF Intermediate Fellowship [FS/17/2/32559]
  5. Chongqing Research Program of Basic Research and Frontier Technology [cstc2016jcyjA0407]
  6. Chongqing Natural Science Foundation [cstc2021jcyj-msxmX0043]

向作者/读者索取更多资源

This study found that the irreversible oxidation of SERCA2 C674 promotes the development of aortic aneurysm by inducing endoplasmic reticulum stress and cell apoptosis. Additionally, ER stress and SERCA2 may be potential therapeutic targets for treating aortic aneurysm.
Background and Purpose The Cys(674) residue (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is key to maintaining its enzyme activity. The irreversible oxidation of C674 occurs broadly in aortic aneurysms. Substitution of C674 promotes a phenotypic transition of aortic smooth muscle cells (SMCs) and exacerbates angiotensin II-induced aortic aneurysm. However, its underlying mechanism remains enigmatic. Experimental Approach Heterozygous SERCA2 C674S knock-in (SKI) mice, in which half of C674 was replaced by serine, were used to mimic partially irreversible oxidation of C674 thiol. The aortas of SKI mice and their littermate wild-type mice under an LDL receptor-deficient background were collected for histological and immunohistochemical analysis. Cultured aortic SMCs were used for protein expression, apoptosis analysis, and cell function studies. Key Results The substitution of SERCA2 C674 caused endoplasmic reticulum (ER) stress and induced SMC apoptosis. The inhibition of ER stress by 4-phenylbutyric acid (4-PBA) in SKI aortic SMCs decreased the expression of marker proteins for cell apoptosis as well as phenotypic transition, and prevented cell apoptosis, proliferation, migration, and macrophage adhesion to SMCs. 4-PBA also ameliorated angiotensin II-induced aortic aneurysm in SKI mice. Conclusions and Implications The irreversible oxidation of SERCA2 C674 promotes the development of aortic aneurysm by inducing ER stress and subsequent SMC apoptosis. Our study illustrates that ER stress caused by oxidative inactivation of C674 is related to the pathogenesis of aortic aneurysm. Therefore, ER stress and SERCA2 are potential therapeutic targets for treating aortic aneurysm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据