4.7 Article

Privacy preserving validation for multiomic prediction models

期刊

BRIEFINGS IN BIOINFORMATICS
卷 23, 期 3, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbac110

关键词

privacy; translational research; reproducibility; model validation; machine learning; transcriptomics

向作者/读者索取更多资源

Reproducibility of results obtained using RNA data in cancer research remains challenging. Current RNA correction algorithms require access to patient-level data, but SpinAdapt computes corrections using aggregate statistics, preserving patient data privacy. SpinAdapt outperforms other methods on publicly available cancer studies and can correct new samples for unbiased evaluation.
Reproducibility of results obtained using ribonucleic acid (RNA) data across labs remains a major hurdle in cancer research. Often, molecular predictors trained on one dataset cannot be applied to another due to differences in RNA library preparation and quantification, which inhibits the validation of predictors across labs. While current RNA correction algorithms reduce these differences, they require simultaneous access to patient-level data from all datasets, which necessitates the sharing of training data for predictors when sharing predictors. Here, we describe SpinAdapt, an unsupervised RNA correction algorithm that enables the transfer of molecular models without requiring access to patient-level data. It computes data corrections only via aggregate statistics of each dataset, thereby maintaining patient data privacy. Despite an inherent trade-off between privacy and performance, SpinAdapt outperforms current correction methods, like Seurat and ComBat, on publicly available cancer studies, including TCGA and ICGC. Furthermore, SpinAdapt can correct new samples, thereby enabling unbiased evaluation on validation cohorts. We expect this novel correction paradigm to enhance research reproducibility and to preserve patient privacy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据