4.7 Article

Genome-wide identification and expression analysis of the plant-specific PLATZ gene family in Tartary buckwheat (Fagopyrum tataricum)

期刊

BMC PLANT BIOLOGY
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12870-022-03546-4

关键词

Phylogenetic analysis; Tandem duplication; Segmental duplication; Synteny analysis; cis-acting element; Exogenous hormones

资金

  1. National Natural Science Foundation of China [31671631, 31501365]
  2. National Key R&D Program of China [2019YFD1000700, 2019YFD1000702]
  3. Shaanxi Province Modern Crops Seed Industry Project [20171010000004, NYKJ-2018-YL19]

向作者/读者索取更多资源

This study provides a preliminary exploration of the function and roles of FtPLATZ proteins in Tartary buckwheat and lays the foundation for genetic improvement of this crop.
Background Plant AT-rich sequence and zinc-binding (PLATZ) proteins belong to a novel class of plant-specific zinc-finger-dependent DNA-binding proteins that play essential roles in plant growth and development. Although the PLATZ gene family has been identified in several species, systematic identification and characterization of this gene family has not yet been carried out for Tartary buckwheat, which is an important medicinal and edible crop with high nutritional value. The recent completion of Tartary buckwheat genome sequencing has laid the foundation for this study. Results A total of 14 FtPLATZ proteins were identified in Tartary buckwheat and were classified into four phylogenetic groups. The gene structure and motif composition were similar within the same group, and evident distinctions among different groups were detected. Gene duplication, particularly segmental duplication, was the main driving force in the evolution of FtPLATZs. Synteny analysis revealed that Tartary buckwheat shares more orthologous PLATZ genes with dicotyledons, particularly soybean. In addition, the expression of FtPLATZs in different tissues and developmental stages of grains showed evident specificity and preference. FtPLATZ3 may be involved in the regulation of grain size, and FtPLATZ4 and FtPLATZ11 may participate in root development. Abundant and variable hormone-responsive cis-acting elements were distributed in the promoter regions of FtPLATZs, and almost all FtPLATZs were significantly regulated after exogenous hormone treatments, particularly methyl jasmonate treatment. Moreover, FtPLATZ6 was significantly upregulated under all exogenous hormone treatments, which may indicate that this gene plays a critical role in the hormone response of Tartary buckwheat. Conclusions This study lays a foundation for further exploration of the function of FtPLATZ proteins and their roles in the growth and development of Tartary buckwheat and contributes to the genetic improvement of Tartary buckwheat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据