4.5 Article

Investigation of geometric deformations of the lumbar disc during axial body rotations

期刊

BMC MUSCULOSKELETAL DISORDERS
卷 23, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12891-022-05160-9

关键词

Lumbar disc; In vivo kinematics; Axial rotation; Weightbearing; Deformation

资金

  1. National Natural Science Foundation of China [81472140]

向作者/读者索取更多资源

This study investigated in vivo lumbar intervertebral disc deformations during axial rotations under different load-bearing conditions. The results showed that the deformation patterns were direction-specific and level-specific, and were affected by extra weight.
Background Quantitative data on in vivo vertebral disc deformations are critical for enhancing our understanding of spinal pathology and improving the design of surgical materials. This study investigated in vivo lumbar intervertebral disc deformations during axial rotations under different load-bearing conditions. Methods Twelve healthy subjects (7 males and 5 females) between the ages of 25 and 39 were recruited. Using a combination of a dual fluoroscopic imaging system (DFIS) and CT, the images of L3-5 segments scanned by CT were transformed into three-dimensional models, which matched the instantaneous images of the lumbar spine taken by a double fluorescent X-ray system during axial rotations to reproduce motions. Then, the kinematic data of the compression and shear deformations of the lumbar disc and the coupled bending of the vertebral body were obtained. Results Relative to the supine position, the average compression deformation caused by rotation is between + 10% and - 40%, and the shear deformation is between 17 and 50%. Under physiological weightbearing loads, different levels of lumbar discs exhibit similar deformation patterns, and the deformation patterns of left and right rotations are approximately symmetrical. The deformation patterns change significantly under a 10 kg load, with the exception of the L3-4 disc during the right rotation. Conclusion The deformation of the lumbar disc was direction-specific and level-specific during axial rotations and was affected by extra weight. These data can provide new insights into the biomechanics of the lumbar spine and optimize the parameters of artificial lumbar spine devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据