4.8 Article

Optothermophoretic flipping method for biomolecule interaction enhancement

期刊

BIOSENSORS & BIOELECTRONICS
卷 204, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114084

关键词

Surface plasmon resonance sensing; Optical manipulation; Molecule manipulation; Molecular interaction; Optofluidics

资金

  1. National Natural Science Foundation of China [61905145, 61775148, 61527827]
  2. National Key Research and Development Program of China [2017YFB0403804]
  3. Guangdong Natural Science Foundation [2021A1515011916, 2018A030310544]
  4. Shenzhen Science and Technology R&D and Innovation Foundation [JCYJ20180305124754860, JCYJ20200109105608771]

向作者/读者索取更多资源

The widely used surface-based biomolecule sensing scheme has greatly facilitated the investigation of protein-protein interactions in lab-on-a-chip microfluidic systems. However, in most biosensing schemes, the interactions are driven in a passive way, hindering their efficiency. To break this limitation, an all-optical active method termed optothermophoretic flipping (OTF) was developed. The method achieved a 23.6-fold sensitivity increment in biomolecule interactions sensing compared to Brownian diffusion, opening new opportunities for high sensitivity biosensing platforms.
The widely used surface-based biomolecule sensing scheme has greatly facilitated the investigation of protein-protein interactions in lab-on-a-chip microfluidic systems. However, in most biosensing schemes, the interactions are driven in a passive way: The overall sensing time and sensitivity are totally dependent on the Brownian diffusion process, which has greatly hindered their efficiency, especially at low concentration levels or single-molecule analysis. To break this limitation, we developed an all-optical active method termed optothermophoretic flipping (OTF). It is the first temporal modulated method that biomolecules were enriched and pushed to their counterparts for effective contact via a flipped thermophoresis. As a proof-of-concept experiment, we tested its performance via antibody-antigen binding on a surface plasmon resonance imaging (SPRi) platform. Compared with the interaction solely based on Brownian diffusion, we achieved a 23.6-fold sensitivity increment in biomolecule interactions sensing. This method has opened new opportunities for various biosensing platforms that require high-sensitivity in colloidal sciences and biochemical studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据