4.8 Review

A review on the diverse interactions between microalgae and nanomaterials: Growth variation, photosynthetic performance and toxicity

期刊

BIORESOURCE TECHNOLOGY
卷 351, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2022.127048

关键词

Microalgae; Nanomaterials; Hormetic responses; Growth inhibition

资金

  1. Fundamental Research Grant Scheme (Malaysia) [FRGS/1/2020/STG01/UNIM/02/2]
  2. Ministry of Higher Education

向作者/读者索取更多资源

This study reviews the interactions between nanomaterials (NMs) and microalgae, finding that NMs can improve microalgal growth and photosynthetic efficiency at low concentrations, but have negative effects at higher concentrations. The toxicity of different types of NMs on microalgae varies.
Vast improvements in nanotechnology have led to the wide usage of nanomaterials (NMs) in daily products. This study reviews the interactions between NMs and microalgae in terms of impacts on growth and photosynthetic efficiency, and their toxicity on microalgae. All types of NMs such as carbon-based NMs (CNMs), metal oxide based NMs (MONMs) and noble metal-based NMs (NMNMs) improve microalgal growth and photosynthetic efficiency at low concentration, typically ranging between 1 and 15 mg/L depending on the type of NMs, due to hormetic responses by microalgae. Higher concentrations of NMs have been found to reduce photosynthetic efficiency and subsequent growth inhibition of microalgae. MONMs-microalgae and NMNMs-microalgae interactions focus on membrane alteration, whereas carbon-based NMs-microalgae focus more on shading effect. The toxicity of each type of NMs on microalgae is in the order rGO > GO > MG > CNT for carbon-based NMs, ZnO > TiO2 > CuO > Fe2O3 for MONMs and Ag > Au > Pt for NMNMs. Incorporation of NMs in microalgae are seen to have promising future on producing higher microalgae yield with increased economic efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据