4.7 Review

Chemical reagents modulate nucleic acid-activated toll-like receptors

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 147, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2022.112622

关键词

Toll-like receptor; Type-I interferon; Agonist; Antagonist; Inhibitors

向作者/读者索取更多资源

Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. This article discusses the receptors involved in sensing nucleic acid molecules, their structures and functions, and the importance of their proper functioning in cell homeostasis and response to pathogen invasion. It also explores the impact of manipulating these receptors on defense mechanisms and presents the discovery of chemicals that can modulate their signaling activities.
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据