4.5 Article

Dihydroartemisinin Prevents Liver Fibrosis in Bile Duct Ligated Rats by Inducing Hepatic Stellate Cell Apoptosis through Modulating the PI3K/Akt Pathway

期刊

IUBMB LIFE
卷 68, 期 3, 页码 220-231

出版社

WILEY
DOI: 10.1002/iub.1478

关键词

dihydroartemisinin; liver fibrosis; hepatic stellate cell; mitochondrial apoptosis; PI3K

资金

  1. National Natural Science Foundation of China [81270514, 31401210, 31571455]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions
  3. Youth Natural Science Foundation of Jiangsu Province [BK20140955]
  4. Program for Excellent Scientific and Technological Innovation Team of Jiangsu Higher Education
  5. Youth Natural Science Foundation of Nanjing University of Chinese Medicine [13X ZR20]
  6. Natural Science Research General Program of Jiangsu Higher Education Institutions [14KJB310011]
  7. Open Project Program of National First-Class Key Discipline for Pharmacy of Nanjing University of Chinese Medicine [KYLX-0974]
  8. Medical Science and technology development Foundation, Nanjing Department of Health [YKK14143]

向作者/读者索取更多资源

As a frequent event following chronic insult, liver fibrosis triggers wound healing reactions, with extracellular matrix components accumulated in the liver. During liver fibrogenesis, activation of hepatic stellate cells (HSCs) is the pivotal event. Fibrosis regression can feasibly be treated through pharmacological induction of HSC apoptosis. Herein we showed that dihydroartemisinin (DHA) improved liver histological architecture, decreased hepatic enzyme levels, and inhibited HSCs activation in the fibrotic rat liver. DHA also induced apoptosis of HSCs in such liver, as demonstrated by reduced distribution of alpha-SMA-positive cells and the presence of high number of cleaved-caspase-3-positive cells in vivo, as well as by down-regulation of Bcl-2 and up-regulation of Bax. In addition, in vitro experiments showed that DHA significantly inhibited HSC proliferation and led to dramatic morphological alterations in HSCs. we found that DHA disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that DHA induced HSC apoptosis through disrupting the phosphoinositide 3-kinase (PI3K)/Akt pathway and that PI3K specific inhibitor LY294002 mimicked the pro-apoptotic effect of DHA. DHA is a promising candidate for the prevention and treatment of liver fibrosis. (C) 2016 IUBMB Life

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据