4.7 Article

Rate of translocation across lipid bilayer of triphenylphosphonium-linked salinomycin derivatives contributes significantly to their K plus /H plus exchange activity on membranes

期刊

BIOELECTROCHEMISTRY
卷 145, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2022.108089

关键词

Bilayer lipid membrane; Liposome; Mitochondria; Ionophore; K+/H+ -exchange; Salinomycin

资金

  1. Russian Science Foundation [2114-00062]
  2. project OPUS - National Science Centre, Poland (NCN) [2021/41/B/ST4/00088]

向作者/读者索取更多资源

A series of SAL derivatives targeting mitochondria were synthesized, and compound 5 exhibited promising anticancer and antimicrobial activity with high permeability on lipid membranes.
Salinomycin (SAL), a polyether antibiotic exerting K+/H+-exchange on cellular membranes, effectively kills cancer stem cells. A series of cationic triphenylphosphonium (TPP+)-linked SAL derivatives were synthesized aiming to render them mitochondria-targeted. Remarkably, attaching a TPP+ moiety via a triazole linker at the C-20 position of SAL (compound 5) preserved the ion carrier potency of the antibiotic, while analogs with TPP+ linked at the C-1 position of SAL (6, 8) were ineffective. On planar bilayer lipid membranes (BLM), the SAL analogs 6 and 8 exhibited slow electrical current relaxation upon a voltage jump, similar to previously studied alkyl-TPP compounds. However, 5 demonstrated much faster current relaxation, which suggested its high permeability through BLM resulting in its pronounced potency to transport potassium and hydrogen ions across both artificial (liposomal) and mitochondrial membranes. SAL and 5 did not induce a steady-state electrical current through the planar lipid bilayer, thereby confirming that the transport mechanism is the electrically silent K+/H+ exchange. The ion exchange mediated by 5 in energized mitochondria was more active than that caused by SAL, which was apparently due to accumulation of 5 in mitochondria. Thus, compound 5 can be regarded as a promising lead compound for testing anticancer and antimicrobial activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据