4.6 Article

Jupiter's inhomogeneous envelope

期刊

ASTRONOMY & ASTROPHYSICS
卷 662, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202243207

关键词

planets and satellites; interiors; planets and satellites; gaseous planets; planets and satellites; formation; planets and satellites; composition

资金

  1. Juno Project
  2. Southwest Research Institute

向作者/读者索取更多资源

This paper presents a Bayesian statistical analysis of Jupiter's interior models, revealing a heavy-element enrichment in the planet's envelope compared to the outer layers. This finding has important implications for the formation of giant planets in our Solar System and beyond.
Context. While Jupiter's massive gas envelope consists mainly of hydrogen and helium, the key to understanding Jupiter's formation and evolution lies in the distribution of the remaining (heavy) elements. Before the Juno mission, the lack of high-precision gravity harmonics precluded the use of statistical analyses in a robust determination of the heavy-element distribution in Jupiter's envelope. Aims. In this paper, we assemble the most comprehensive and diverse collection of Jupiter interior models to date and use it to study the distribution of heavy elements in the planet's envelope. Methods. We apply a Bayesian statistical approach to our interior model calculations, reproducing the Juno gravitational and atmospheric measurements and constraints from the deep zonal flows. Results. Our results show that the gravity constraints lead to a deep entropy of Jupiter corresponding to a 1 bar temperature that is 515 K higher than traditionally assumed. We also find that uncertainties in the equation of state are crucial when determining the amount of heavy elements in Jupiter's interior. Our models put an upper limit to the inner compact core of Jupiter of 7 M-Earth, independently of the structure model (with or without a dilute core) and the equation of state considered. Furthermore, we robustly demonstrate that Jupiter's envelope is inhomogeneous, with a heavy-element enrichment in the interior relative to the outer envelope. This implies that heavy-element enrichment continued through the gas accretion phase, with important implications for the formation of giant planets in our Solar System and beyond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据