4.7 Review

Review on aqueous graphene nanoplatelet Nanofluids: Preparation, Stability, thermophysical Properties, and applications in heat exchangers and solar thermal collectors

期刊

APPLIED THERMAL ENGINEERING
卷 210, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2022.118342

关键词

Graphene nanoplatelets; Nanofluid; Heat transfer; Heat exchanger; Solar thermal collector

资金

  1. University of Malaya [IIRG014B-2019]

向作者/读者索取更多资源

This review provides an in-depth analysis of the preparation, stability, and thermophysical properties of graphene nanoplatelets (GNP) nanofluids, and explores their applications in heat exchangers, solar thermal collectors, and heat pipes. The study finds that covalently functionalised GNP nanofluids outperform non-covalently functionalised in terms of stability and heat transfer coefficients. As particle size decreases, stability and heat transfer performance improve, while thermal conductivity and convection coefficients increase with nanofluid concentration and temperature.
Nanofluids of graphene nanoplatelets (GNP) have superior thermal performance characteristics and good sta-bility, are relatively affordable, and can easily be prepared by the two-step method. This review performs an in-depth analysis of the preparation, stability, and thermophysical properties of GNP nanofluids, and their appli-cations in heat exchangers, solar thermal collectors, and heat pipes. This study analyses in detail the performance improvements achieved with pristine, covalent functionalised, and non-covalent functionalised GNP nanofluids compared to water. Covalent functionalisation was found to be superior to non-covalent functionalisation in terms of stability and heat transfer coefficients. Functionalisation by electrophilic addition and free-radical grafting were found to be more environmentally friendly compared to acid treatment. In terms of convective heat transfer coefficient, pristine GNP outperformed functionalised GNP, but both types showed large im-provements compared to water. It was found that stability and heat transfer performance improved as particle size was decreased, while thermal conduction and convection coefficients increased with nanofluid concentra-tion and temperature. Thermal conductivity improvements of over 30% were found for both pristine and covalently functionalised GNP nanofluids at 0.1 wt% concentration. A maximum convection heat transfer co-efficient increase of 200% was achieved using 0.1 wt% pristine GNP nanofluid. By comparison, a maximum improvement of 119% was achieved using covalently functionalised GNP. The convective heat transfer enhancement seemed to increase with decreasing tube diameter. In flat plate solar collector applications, effi-ciency improvements over 20% were obtained for covalently functionalised GNP nanofluids at 0.1 wt%, while an efficiency improvement of over 65% was obtained using pristine GNP in an evacuated tube solar collector. Applications in cooling, heat pipes, and direct absorption solar collectors were also reviewed. From this study, it could be inferred that GNP nanofluids are a viable alternative working fluid. Further research is needed to optimise their performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据