4.7 Article

Performance of Al2O3-SiO2/PAG composite nanolubricants in automotive air-conditioning system

期刊

APPLIED THERMAL ENGINEERING
卷 204, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.117998

关键词

Hybrid nanolubricant; Coefficient of performance; Polyalkylene Glycol; Refrigeration system; Automotive air-conditioning

向作者/读者索取更多资源

Improving the performance of automotive air-conditioning (AAC) systems is important for reducing energy consumption and promoting energy efficiency. This study investigated the use of Al2O3-SiO2/PAG composite nanolubricants to enhance the efficiency of AAC systems. The results showed that the composite nanolubricants improved cooling capacity, compressor work, coefficient of performance (COP), and power consumption. The recommended concentration of 0.015% Al2O3-SiO2/PAG nanolubricants achieved the highest efficiency in AAC system performance.
Automotive air-conditioning (AAC) system performance must be improved to reduce energy consumption and promote energy efficiency. Efficiency of the AAC system can be increased by applying the right lubricants. With a combination of different metal oxide components and composition ratios, composite nanolubricants are expected to outperform single-component nanolubricants in improving AAC system performance. The present work was undertaken to investigate the performance of the AAC system using combination of Al2O3-SiO2/PAG composite nanolubricants with composition ratio of 60:40 for 0.005 to 0.06% volume concentrations. The experiment was undertaken with an initial refrigerant charge of between 95 and 155 g and a compressor speed of between 900 and 2100 rpm. The efficiency of the AAC system was assessed by the determination of cooling capacity, compressor work, coefficient of performance (COP) and power consumption. The highest average COP enhancement was recorded 28.10% at 0.015% volume concentration. Al2O3-SiO2/PAG composite nanolubricants attained the highest COP value of 9.19 for 155g at compressor speed of 900 rpm. In addition, for 0.015% Al2O3-SiO2/PAG composite nanolubricants, the cooling capacity was enhanced up to 65.21% while the compressor work and power consumption were reduced up to 25.26% and 19.70% respectively. Therefore, 0.015% Al2O3-SiO2/PAG nanolubricants was highly recommended for the maximum efficiency in AAC system performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据