4.7 Article

Analysis of heat transfer characteristics and entransy evaluation of high viscosity fluid in a novel twisted tube

期刊

APPLIED THERMAL ENGINEERING
卷 210, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2022.118388

关键词

Twisted oval tube; Entransy; Heat transfer enhancement; High viscosity fluid; Twisted tube

资金

  1. National Natural Science Foundation of China [51876055]
  2. Key R&D and Promotion Project of Henan Province [212102310327]
  3. Key Laboratory of Renewable Energy, Chinese Academy of Sciences [E029kf0401]
  4. Key Research Project of Higher Institutions in Henan Province [21A470002]
  5. Innovative Research Team (in Science and Technology) in University of Henan Province [22IRTSTHN006, 2021004]
  6. Doctoral Research Startup Fund of Henan University of Science and Technology

向作者/读者索取更多资源

A novel twisted tube improves the distribution of secondary flow, enhancing convective heat transfer. Experimental results in the low Reynolds number region show that NTT can improve heat transfer performance and reduce thermal resistance.
The non-uniformity of the secondary flow distribution in the twisted oval tube has impeded its further improvement of the heat transfer performance. A novel twisted tube (NTT) improves the distribution of the secondary flow and enlarges the effect of the secondary flow on the main flow, intensifying the radial mixing and equalizing the temperature distribution of the fluid, which strengthens the convective heat delivery in the near wall region and the core zone comprehensively. Heat transfer characteristics and entransy evaluation of water and engine oil in the NTT are investigated in the low Reynolds number (Re) region. The heat delivery performance of the NTT improves with the reduction of the distance ratio (DR) and the twist pitch ratio (PR), and also raises with the increase of Re. The friction factor of the NTT increases with the reduction of DR and PR, and decreases with the rise of Re. Compared with the twisted oval tube, the NTT could elevate the Nusselt number and enlarge the friction factor by 1.49-1.56 times and 1.32-1.41 times, respectively. Compared with the plain tube, the NTT could improve the Nusselt number and increase the friction factor by 2.42-2.76 times and 1.48-1.56 times, respectively. The equivalent thermal resistance of the NTT decreases with the reduction of DR and PR and reduces with the increase of Re. The Case 4 with the minimum DR and the smallest PR shows the supreme heat transfer performance and the lowest equivalent thermal resistance. The NTT could reduce the entransy dissipation remarkably, compared with the plain tube, the NTT could decrease the equivalent thermal resistance by up to 58% for water under the condition of constant wall temperature and could reduce the equivalent thermal resistance by as much as 53% for engine oil under the condition of given heat flux on the tube wall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据