4.7 Article

Functional plasma-polymerized hydrogel coatings for electrochemical biosensing

期刊

APPLIED SURFACE SCIENCE
卷 584, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.152511

关键词

Hydrogel coating; Functional surface; Atmospheric pressure plasma polymerization; Electrochemical biosensor; Amperometry; Glucose oxidase; Acetylcholinesterase

资金

  1. Ministry of Education, Youth and Sports of the Czech Republic [LQ1601]

向作者/读者索取更多资源

Acrylate-based hydrogels have been proven to be excellent materials for sensor systems. In this study, hydrogels made of hydroxyethyl methacrylate and 2-(diethylamino)ethyl methacrylate were generated by atmospheric pressure plasma jet. The interaction capability of these hydrogels with biomolecules and their application in electrochemical biosensing were investigated.
Acrylate-based hydrogels with multifunctional properties have proven to be suitable candidates for the development of sensor systems. They gained popularity especially in combination with bioelectronics, as there is a need to understand and control the interactions of bionic devices with the human body and other environments. In this study, we present results on the biointeraction capability of plasma-polymerized (pp) hydrogels made of hydroxyethyl methacrylate (HEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) mixtures on gold screen-printed electrodes (SPE). The hydrogels were generated by an atmospheric pressure plasma jet, and their chemical composition was characterized via FT-IR. The FT-IR analysis revealed several functional groups suitable for biomolecule immobilization, whereas the amount of-C-N, -OH, and-C-O-C groups differs depending on the mixture ratios. The pp HEMA:DEAEMA (HD) hydrogel coatings provide alternative interfacing materials for electrochemical biosensing. The enzymes glucose oxidase (GOx) and acetylcholinesterase (AChE) were coupled to the hydrogel-based surfaces, and the effects of the mixture ratios on the biomolecule immobilization were investigated. It is possible to address different functional groups of the mixtures with different immobilization strategies; thus, the sensor response can be optimized. Finally, glucose as GOx substrate and eserine as AChE inhibitor were detected by amperometry to demonstrate the practical biosensing applicability of the coatings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据