4.7 Article

H3PO4-based wet chemical etching for recovery of dry-etched GaN surfaces

期刊

APPLIED SURFACE SCIENCE
卷 582, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2021.152309

关键词

Gallium nitride; XPS; AFM; Wet etching; Surface; GaN

资金

  1. French Government Program Investissements d'Avenir [ANR-10-EQPX-33]
  2. French RENATECH network

向作者/读者索取更多资源

This study explores the impact of several wet etchants commonly encountered in the microelectronic industry on the surface chemistry of GaN on silicon. Phosphoric acid treatment is found to significantly modify the surface and enable the recovery of the surface morphology. The study proposes a promising treatment method for the recovery of good quality GaN surfaces after dry etching.
The impact of several wet etchants commonly encountered in the microelectronic industry on the surface chemistry of GaN on silicon was explored. In order to get closer to fully recessed gate HEMT fabrication processes, we investigated different kinds of GaN surfaces. This study was conducted on as-grown GaN and dry etched GaN, with etching consisting of inductive coupled plasma reactive ion etching (ICP-RIE), followed by atomic layer etching (ALE) and O-2 plasma stripping. The impact of each wet treatment was evaluated by parallel Angle Resolved X-ray Photoelectron Spectroscopy (pAR-XPS). Treatment with phosphoric acid (H3PO4) showed a significant modification of the surface and further studies were performed using this treatment. The impact of H3PO4 on GaN surface chemistry and morphology was assessed by pAR-XPS and atomic force microscopy (AFM) respectively. A delayed effect was observed for dry etched samples compared to as-grown samples, with a successful recovery of the surface after 60 min of treatment. We also proposed a mechanism explaining the progressive formation on steps on the surface over time. Further research was performed on dry etched samples without ALE which also modified the delay time of the H3PO4 treatment, but still enabled a recovery of the surface morphology. In contrast to other studies, we showed that, with the appropriate choice of parameters for the H3PO4 treatment, it was possible to successfully recover the GaN surface after dry etching without significantly opening dislocation holes. This is therefore a promising treatment to be used during GaN HEMT processing to recover good quality surfaces after etching.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据