4.7 Article

High-temperature wear mechanism of diamond at the nanoscale: A reactive molecular dynamics study

期刊

APPLIED SURFACE SCIENCE
卷 585, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.152614

关键词

Nanoscale wear; Wear of diamond; High temperature; Reactive molecular dynamics

向作者/读者索取更多资源

This paper presents a reactive molecular dynamics study on the nanoscale wear mechanism of diamond under different temperatures. The research reveals a critical temperature that significantly accelerates the mechanical failure and wear of diamond. The study also analyzes the effects of thermal stress and friction-induced stress on the diamond structure.
Diamond is highly wear-resistant at room temperature, while it suffers from rapid wear under the high temperature tribological conditions. In this paper, we present a reactive molecular dynamics study to unveil the nanoscale wear mechanism of diamond with the evolution of temperatures. We find a critical temperature over which the mechanical failure and wear of diamond will be significantly accelerated. The diamond structure fails when the total stress reaches 157-165 GPa, which is composed of thermal stress and friction-induced stress. The thermal stress due to the restriction of thermal expansion substantially increases with temperature and contributes a major part to the total stress. At the critical temperature, the interfacial chemical bonding and the frictional contact are strongly intensified, with substantially increased contact quality and contact area. On the other hand, the temperature elevated to the critical value induces a drastic increase of sp and dangling bonds in diamond, leading to the internal collapse of the mechanical strength. Ultimately, the synergy of the enhanced frictional contact and decreased mechanical strength leads to the failure and wear of diamond. This work provides a novel insight into the wear mechanism of diamond under elevated temperatures, and contributes to the wear theory in diamond materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据