4.6 Article

Spin-glass behavior and magnetocaloric properties of high-entropy perovskite oxides

期刊

APPLIED PHYSICS LETTERS
卷 120, 期 8, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0081688

关键词

-

资金

  1. National Natural Science Foundation of China [52002383]
  2. Ningbo Municipal Bureau of Science and Technology [202003N4365]

向作者/读者索取更多资源

This study investigates the magnetic properties and magnetocaloric performance of two high-entropy perovskites. It is found that a spin-glass phase occurs at low temperatures in the high-entropy compounds, leading to a sluggish magnetic transition. The increase in configurational entropy results in large refrigerant capacity for these materials.
The high-entropy concept has been recently proposed to be a promising paradigm to enhance the magnetocaloric properties of materials. Motivated by this, the magnetic properties and the magnetocaloric performance of two high-entropy perovskites (Dy1/4Ho1/4Er1/4Tb1/4)FeO3 and (Gd1/5Dy1/5Ho1/5Er1/5Tb1/5)FeO3 have been investigated. The magnetic measurements indicate that a spin-glass phase occurs at low temperatures in the high-entropy compounds, which is induced by the strong compositional disorder of rare-earth sublattice. The glassy state can lead to a sluggish magnetic transition and consequently a potential improvement in the magnetocaloric performance. Due to the increase in configurational entropy, large refrigerant capacity of 247 and 203 J/kg for a magnetic field change of 70 kOe is obtained in the (Gd1/5Dy1/5Ho1/5Er1/5Tb1/5)FeO3 and (Dy1/4Ho1/4Er1/4Tb1/4)FeO3 compounds, respectively. Our findings highlight the availability of spin order control through tuning the configurational entropy and demonstrate the key role of high-entropy design in enhancing the magnetocaloric properties of materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据