4.8 Article

Converting waste into fuel via integrated thermal and electrochemical routes: An analysis of thermodynamic approach on thermal conversion

期刊

APPLIED ENERGY
卷 311, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2022.118574

关键词

Thermodynamic; Gasification; Municipal solid waste; Waste recycling; Electrolysis

资金

  1. Canada First Excellence Research Fund (CFERF) at University of Calgary

向作者/读者索取更多资源

Municipal solid waste (MSW) can be a potential sustainable energy source. Research has shown that gasification can effectively convert waste into electricity and chemical products.
Municipal solid waste (MSW) is a common problem as it typically ends up in landfills. MSW could be a potential sustainable energy source with proper technology considering its abundant availability and high energy content. As a part of the solution to the MSW problem, the present research investigated a new integrated gasification process to ensure the complete removal of organic compounds (tar) by splitting char and gas products. The char is directed to the combustor to produce electricity for powering CO2-to-methanol electrolysis, while the gas products are sent to the reforming section to decompose tar into syngas. It is found that char composition is sensitive towards the syngas yield and the gasification temperature. The increase of char combustion from 20% to 50% promotes methanol production via electrolysis but suppresses the overall energy productivity due to energy loss in the power generation and electrolysis. The optimum gasification performance is observed at the air/O-2 equivalence ratio of ~0.3 with the syngas heating value (6.4 and 12.3 MJ/Nm(3)), H-2/CO ratio (1.4 and 1.1) and overall efficiency of 65% and 64% for air and oxygen gasifying agents, respectively. These findings show the potential of MSW to electricity and chemical products via gasification which can increaseeconomic value and optimistically increase the residents' acceptance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据