4.8 Article

Development and implementation of multi-agent systems for demand response aggregators in an industrial context

期刊

APPLIED ENERGY
卷 314, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2022.118841

关键词

Multi-agent systems; Demand response; Demand side management; Virtual power plants; Smart grid

向作者/读者索取更多资源

The paper discusses the importance of using Multi-Agent Systems (MAS) in the power grid field and the challenges in practical application. It presents a MAS to help DR aggregators improve system management and designs technical implementations on standard industrial equipment based on the requirements of the German DR market.
Demand Response (DR) mechanisms are an important pillar in the transition to a bigger share of renewable energy in the power grid. To utilize DR, industrial companies can offer load flexibility at DR markets by cooperating with DR aggregators. Numerous studies promote the use of multi-agent systems (MAS) in this domain, however there is a lack of actual implementations and real world adaption. The literature has identified several reasons for this. These include research that often focuses on a high level of abstraction, the assumption of homogeneous structures for the use of agents, and insufficient tools and solutions for industrial deployment. To help DR aggregators use MAS in their existing virtual power plants, this paper presents a MAS that enables a step-by-step switch to agent technology and enables them to implement the solutions developed by the research community to improve the management of their systems. The proposed technical implementation on standard industrial equipment and the required interfaces to flexibility provider and DR aggregator are derived from the German DR market requirements. A simulation of the MAS implemented on a laboratory setup via the Java Agent DEvelopment Framework will be presented. This should provide a foundation for the transition to real world adaption in the future, which will then be discussed to show the benefits and drawbacks of this solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据