4.8 Article

Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach

期刊

APPLIED ENERGY
卷 309, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2021.118475

关键词

Agrivoltaics; Agrophotovoltaic design; Bifacial solar photovoltaic optimization; Radiance/Daysim simulation; Multi-scale sensitivity analysis; Land equivalent ratio

向作者/读者索取更多资源

The study investigates the use of agrophotovoltaic (APV) systems to simultaneously produce renewable energy and crops. Different APV topologies were analyzed under various climates, and the E-W wings topology showed the best performance in terms of both electricity generation and crop growth.
To safeguard future renewable energy and food supply the use of agrophotovoltaic (APV) systems was investi-gated, which enable simultaneous production under the same piece of land. As conventional photovoltaic (PV) array topologies lead to unfavourable conditions for crop growth, the application of APV is limited to areas with high solar insolation. By optimizing the APV array's design, compatibility with various climates and crop species can be attained. Therefore, the aim of this research was to establish a multi-scale modelling approach and determine the optimal topology for a medium-to-large-scale fixed bifacial APV array. Three main topologies were analyzed under the climate of Boston, USA: S-N facing, E-W wings, and E-W vertical. For each topology, respectively, specific yield was amplified by 39%, 18%, and 13% in comparison to a conventional monofacial ground mounted PV array. E-W vertical is more appropriate for permanent crop species, while S-N facing ne-cessitates the cultivation of shade tolerant crops during summer as electricity generation is prioritized. The E-W wings APV topology combines the best of both; light is distributed homogeneously, and crops are effectively shaded at noon. To promote the growth rate of blueberries under shade, customized bifacial modules were in-tegrated (arranged as the E-W wings). Land productivity enhanced by 50%, whereas electrical AC yield reduced by 33% relative to the conventional and separate production. Through this holistic approach, it is possible to achieve a comprehensive understanding of the limitations and potential synergies associated with the dual use of land; ultimately, encouraging the transition of the agricultural sector into sustainability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据