4.8 Article

Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 307, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121204

关键词

Ru nanocluster; Transition; Oxygen vacancies; Ru -O -Mo sites; Hydrogen evolution reaction

资金

  1. Shandong Province, China [ts201712045, 1.190002.01]

向作者/读者索取更多资源

This paper successfully designs Ru/MoO2_x catalyst for the alkaline hydrogen evolution reaction, addressing the insufficient electrochemical activity of MoO2 and weak adsorption/dissociation abilities of Ru. The specific structure design incorporating Ru-O-Mo sites and oxygen-vacancy-enriched MoO2 enables the catalyst to exhibit excellent electrocatalytic activity.
Designing highly efficient Pt-free electrocatalysts with low overpotential for the alkaline hydrogen evolution reaction (HER) remains a significant challenge. In this paper, we successfully construct Ru-incorporated oxygen-vacancy-enriched MoO2 nanosheets (Ru/MoO2_x) for the HER through a one stone two birds strategy. This strategy can solve two urgent problems simultaneously, the intrinsic electrochemical activity of original MoO2 is far from satisfactory and the H2O adsorption/dissociation abilities of Ru are weak. Specifically, the oxygen-vacancy-enriched MoO3 serves as an excellent platform for anchoring and trapping Ru ions. In-depth analyses indicate that the incorporation of Ru nanoclusters induces transition from MoO3 to MoO2, generates oxygen vacancies, and creates Ru-O-Mo sites. The synergistic effect of Ru nanoclusters, Ru-O-Mo sites and oxygen-vacancy-enriched MoO2 will endow the obtained catalyst excellent electrocatalytic activity. In particular, the optimal Ru/MoO2_x electrocatalyst delivered a low overpotential of 29 mV at 10 mA cm(_2) in a basic electrolyte.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据