4.6 Article

Responses of the Soil Bacterial Community, Resistome, and Mobilome to a Decade of Annual Exposure to Macrolide Antibiotics

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/aem.00316-22

关键词

antimicrobial resistance; biosolids; macrolides; soil microbiology

资金

  1. federal Genomics Research and Development Initiative on AMR (GRDI-AMR)
  2. Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST)
  3. AAFC

向作者/读者索取更多资源

This study evaluated the effects of long-term and repeated exposure to macrolide antibiotics on the diversity of soil bacterial community, resistome, and mobilome. At unrealistically high concentrations, macrolide antibiotics altered the overall diversity of resistome and mobilome, enriching for antibiotic resistance genes and mobile genetic elements of concern to human health. However, at realistic antibiotic concentrations, no effect on these endpoints was observed, suggesting that current biosolids land management practices are unlikely to pose a risk to human health due to macrolide antibiotic contamination alone.
Biosolids that are applied to agricultural soil as an organic fertilizer are frequently contaminated with pharmaceutical residues that have persisted during wastewater treatment and partitioned into the organic phase. Macrolide antibiotics, which serve as a critically important human medicine, have been detected within biosolids. To determine the impacts of macrolide antibiotics on soil bacteria, every year for a decade, a series of replicated field plots received an application of a mixture of erythromycin, clarithromycin, and azithromycin at a realistic (0.1 mg kg soil(-1)) or an unrealistically high (10 mg kg soil(-1)) dose or were left untreated. The effects of repeated antibiotic exposure on the soil bacterial community, resistome, mobilome, and integron gene cassette content were evaluated by 16S rRNA and integron gene cassette amplicon sequencing, as well as whole-metagenome sequencing. At the unrealistically high dose, the overall diversity of the resistome and mobilome was altered, as 21 clinically important antibiotic resistance genes predicted to encode resistance to 10 different antibiotic drug classes were increased and 20 mobile genetic element variants (tnpA, intI1, tnpAN, and IS91) were increased. In contrast, at the realistic dose, no effect was observed on the overall diversity of the soil bacterial community, resistome, mobilome, or integron gene cassette-carrying genes. Overall, these results suggest that macrolide antibiotics entrained into soil at concentrations anticipated with biosolid applications would not result in major changes to these endpoints. IMPORTANCE Biosolids, produced from the treatment of sewage sludge, are rich in plant nutrients and are a valuable alternative to inorganic fertilizer when applied to agricultural soil. However, the use of biosolids in agriculture, which are frequently contaminated with pharmaceuticals, such as macrolide antibiotics, may pose a risk to human health by selecting for antibiotic resistance genes that could be transferred to plant-based food destined for human consumption. The consequences of long-term, repeated macrolide antibiotic exposure on the diversity of the soil bacterial community, resistome, and mobilome were evaluated. At unrealistically high concentrations, macrolide antibiotics alter the overall diversity of the resistome and mobilome, enriching for antibiotic resistance genes and mobile genetic elements of concern to human health. However, at realistic antibiotic concentrations, no effect on these endpoints was observed, suggesting that current biosolids land management practices are unlikely to pose a risk to human health due to macrolide antibiotic contamination alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据