4.7 Article

Near-infrared surface plasmon resonance sensor with a graphene-gold surface architecture for ultra-sensitive biodetection

期刊

ANALYTICA CHIMICA ACTA
卷 1205, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aca.2022.339692

关键词

Surface plasmon resonance; Graphene; Biosensor; Sensitivity enhancement

资金

  1. National Natural Science Founda-tion of China [61727816]

向作者/读者索取更多资源

Binding behaviors of proteins play a crucial role in biochemistry applications. This paper presents a label-free sensing approach based on a near-infrared surface plasmon resonance sensing chip modified with a graphene-gold surface architecture. The method demonstrates enhanced sensitivity and detection capability through the use of graphene and successfully detects human immunoglobulin G.
Binding behaviors of proteins are important for applications in the field of biochemistry. Though a standard assay has a favorable limit of detection (LOD), it is mainly limited to indirect observation via fluorescence labeling. We reported and demonstrated a novel label-free sensing approach based on a near-infrared (NIR) surface plasmon resonance (SPR) sensing chip modified with a graphene-gold surface architecture in this paper. The NIR excitation wavelength can greatly improve the sensitivity of SPR sensing derived from the wavelength modulation-based methodology. Moreover, benefiting from the excellent electro-optical properties of graphene in NIR range, the graphene-gold surface architecture was built to further improve the sensing sensitivity. Experimental results proved the superiority over most of those reported previously in terms of ultra-sensitivity (39,160 nm/RIU) and resolution (5.107 x 10(-7) RIU). We detected human immunoglobulin G (IgG) to confirm the ability to enhanced-sensitive detection with a graphene overlayer. This sensor provides surface-specific detection schemes with a large linear dynamic range of ng/ml (pM) to fg/ml (aM) and a LOD of 7.2 fg/ml (48 aM) using gold nanoparticles (GNPs) as amplification labels. The proposed method provides a simple and effective strategy to improve sensitivity and LOD for biochemical detection in a rapid, ultrasensitive, and nondestructive manner. (C)& nbsp;& nbsp;2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据