4.7 Article

Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic

期刊

AGRICULTURAL WATER MANAGEMENT
卷 262, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.agwat.2021.107337

关键词

Crop water consumption; Crop-specific irrigation requirements; Water use indicators; Orchards; Vineyards; Hop gardens; Vegetables; Fodder

资金

  1. National Research Project: Water systems and water management in the Czech Republic in conditions of the climate change [SS02030027]
  2. National Research Project: SustES -Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions [CZ.02.1.01/0.0/0.0/16_019/0000797]
  3. National Research Project: Vulnerability of selected fodder production to support the demand of livestock and renewable energy sectors under climate change conditions [CZ.02.2.69/0.0/0.0/19_073/0016944]

向作者/读者索取更多资源

This study quantified the crop water consumption, crop-specific irrigation requirements, and availability of water resources to catchments under climate change in the Czech Republic. The results indicate that the irrigation demand for some crops will increase under climate change, while the water supply in certain areas may not be sufficient to meet the demand.
This study quantified the crop water consumption, crop-specific irrigation requirements, and availability of water resources to catchments under climate change in the Czech Republic (CZ). Within the SoilClim model and BILANWATERES hydrological water balance modeling process, we tried to answer the question of whether there are at least theoretical water resources in the individual catchments of the CZ that could cover possible higher demands for irrigation. An ensemble of five global climate models under the moderate representative concentration pathway (RCP4.5) from the EURO-CORDEX initiative was chosen to project the future water use indicators. The irrigation water requirement indicators for the growing season (GS) of vineyards, hop gardens, orchards, vegetables, and fodder crops were calculated in 1143 catchments for two periods, 2031-2050 (Sc1) and 2061-2080 (Sc2), compared to the observed period 1961-2020 (Obs). To project irrigation scenarios in agricultural water management, the following water use indicators were quantified: relative soil moisture at 0-40 cm (AWR1) and 0-100 cm (AWR), crop water balance (Rain-ETa), irrigation water requirement (Irrig), and the ratio of actual and reference evapotranspiration (ETratio). To assess areas with a critically low water supply and quantify the frequency of water deficit during the GS of each crop, we calculated the number of days with extreme values of water use indicators. Quantification of the extreme irrigation characteristics reflected the highest depletion of soil moisture and the highest water demands, i.e., when the assessed indicators reached the 25th percentiles. For highly marketable vegetables, the largest deficit in Rain-ETa during the GS for Sc1 was projected. If current vegetable growing areas and cropping systems remain unchanged, Irrig will increase by 10.2% by the end of the 21st century under RCP4.5. Although current potato planting areas have soils with a high available water capacity, they will become controlled by the water deficit over the next few decades. The accumulated vineyard water required suggests that 15% and 25% of irrigation water will be lost by evaporation from the soil surface during the 2030s and 2080s, respectively. However, changes in future hopyard irrigation extent and amounts may have important implications in largely cropped irrigation hotspots. In the main traditional hop region for the 2030s, we project a 25% depletion of soil moisture and an increase of ETratio < 0.4 by up to 5.3%. The projection of a high frequency of days with an ETratio < 0.4 and AWR1 < 30% for fodder crops was related to the most risk prone areas with an extreme lack of moisture in the regions with the most developed animal production. Thus, there will be insufficient fodder supply to the livestock sector due to any water stress during the production season under climate change conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据