4.7 Article

Surface tension of native and modified plant seed proteins

期刊

出版社

ELSEVIER
DOI: 10.1016/j.cis.2022.102641

关键词

Globulins; Albumins; Surface activity; Surface rheology; Storage proteins

资金

  1. Warsaw University of Technology

向作者/读者索取更多资源

This review summarizes the research progress on surface tension and surface compression rheology of 21 plant seed proteins. These proteins have the ability to lower surface tension and form viscoelastic adsorbed layers. By unfolding, hydrolyzing, and modifying these proteins, their surface activity can be enhanced. An advantage of plant seed proteins is their lower environmental cost and abundance in many plants.
The present review, dedicated to Prof. Zbigniew Adamczyk on the occasion of his 70th anniversary, covers the literature data on surface tension and surface compression (dilational) rheology of the adsorbed layers of 21 plant seed proteins (10 leguminous and 11 non-leguminous plants). They are typically analyzed as protein concentrates or isolates, the latter usually obtained by isoelectric precipitation or diafiltration. Despite generally lower solubility, as compared to their animal counterparts (lactoglobulins, caseins, albumins, etc.), the plant seed proteins are also capable of lowering surface tension and forming viscoelastic adsorbed layers. Many seed proteins serve mostly as amino acids reservoirs for the future seedling (storage proteins), hence their instantaneous amphiphilicity is not always sufficient to induce strong adsorption at the aqueous-air interface. They can be, however, conveniently unfolded, hydrolyzed and/or chemically/enzymatically modified to expose more hydrophilic or hydrophobic patches. As shown in numerous contributions reviewed below, the resulting shift of the hydrophilic-lipophilic balance can boost their surface activity to the level comparable to that of many animal proteins or low molecular weight surfactants. An important advantage of the plant seed proteins over the animal ones is their much lower environmental cost and abundance in many plants (e.g. ~40% in sunflower or soybean seeds).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据