4.8 Article

Production of Large-Area Nucleus-Free Single-Crystal Graphene-Mesh Metamaterials with Zigzag Edges

期刊

ADVANCED MATERIALS
卷 34, 期 48, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202201253

关键词

air-ionization; graphene metamaterials; nucleus-free films; wafer-scale films; zigzag edges

资金

  1. King Abdullah University of Science and Technology (KAUST) [OSR-2018-CRG7-3717]

向作者/读者索取更多资源

This study demonstrates a method for controlled production of wafer-scale high-quality nucleus-free graphene-mesh metamaterial films and evaluates the carrier mobility of the fabricated films. These findings contribute to the large-scale production of high-quality low-dimensional graphene-mesh metamaterials and provide insights for the application of integrated circuits based on graphene and other 2D metamaterials.
In addition to conventional monolayer or bilayer graphene films, graphene-mesh metamaterials have attracted considerable research attention within the scientific community owing to their unique physical and optical properties. Currently, most graphene-mesh metamaterials are fabricated using common lithography techniques on exfoliated graphene flakes, which require the deposition and removal of chemicals during fabrication. This process may introduce contamination or doping, thereby limiting their production size and application in nanodevices. Herein, the controlled production of wafer-scale high-quality single-crystal nucleus-free graphene-mesh metamaterial films with zigzag edges is demonstrated. The C-13-isotopic labeling graphene-growth approach, large-area Raman mapping techniques, and a uniquely designed high-voltage localized-space air-ionization etching method are utilized to directly remove the graphene nuclei. Subsequently, a hydrogen-assisted anisotropic etching process is employed for transforming irregular edges into zigzag edges within the hexagonal-shaped holes, producing a large-scale single-crystal high-quality graphene-mesh metamaterial film on a Cu(111) substrate. The carrier mobilities of the fabricated field-effect transistors on the as-produced films are measured. The findings of this study enable the large-scale production of high-quality low-dimensional graphene-mesh metamaterials and provide insights for the application of integrated circuits based on graphene and other 2D metamaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据