4.8 Article

In Situ Synthesis of MOF-74 Family for High Areal Energy Density of Aqueous Nickel-Zinc Batteries

期刊

ADVANCED MATERIALS
卷 34, 期 30, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202201779

关键词

areal energy density; conductivity; energy storage; metal-organic frameworks; MOF-74; nickel-zinc batteries

资金

  1. National Natural Science Foundation of China [U1904215, 21976014, U1930402]
  2. Natural Science Foundation of Jiangsu Province [BK20200044]
  3. Program for Young Changjiang Scholars of the Ministry of Education, China [Q2018270]

向作者/读者索取更多资源

In this study, a series of nickel-based MOF materials with high electrical conductivity and adjustable doping metal ions were fabricated by in situ growth of Mx+ ions in Ni-MOF-74 on carbon cloth. These materials were used as cathodes in aqueous nickel-zinc batteries and exhibited high specific capacity, high areal energy density, and high cycling stability.
Limited by single metal active sites and low electrical conductivity, designing nickel-based metal-organic framework (MOF) materials with high capacity and high energy density remains a challenge. Herein, a series of bi/multimetallic MOF-74 family materials in situ grown on carbon cloth (CC) by doping Mx+ ions in Ni-MOF-74 is fabricated: NiM-MOF@CC (M = Mn2+, Co2+, Cu2+, Zn2+, Al3+, Fe3+), and NiCoM-MOF@CC (M = Mn2+, Zn2+, Al3+, Fe3+). The type and ratio of doping metal ions can be adjusted while the original topology is preserved. Different metal ions are confirmed by X-ray absorption fine structure (XAFS). Furthermore, these Ni-based MOF electrodes are directly utilized as cathodes for aqueous nickel-zinc batteries (NZBs). Among all the as-prepared electrodes, NiCo-MOF@CC-3 (NCM@CC-3), with an optimized Co/Ni ratio of 1:1, exhibits the best electrical conductivity, which is according to the density functional theory (DFT) theoretical calculations. The NCM@CC-3//Zn@CC battery achieves a high specific capacity of 1.77 mAh cm(-2), a high areal energy density of 2.97 mWh cm(-2), and high cycling stability of 83% capacity retention rate after 6000 cycles. The synthetic strategy based on the coordination effect of metal ions and the concept of binder-free electrodes provide a new direction for the synthesis of high-performance materials in the energy-storage field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据