4.8 Article

A Binary Hydrate-Melt Electrolyte with Acetate-Oriented Cross-Linking Solvation Shells for Stable Zinc Anodes

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries

Nannan Zhang et al.

Summary: In this study, an ultrathin and uniform MXene layer was assembled on the surface of zinc anodes using an in situ spontaneously reducing/assembling strategy. The integrated MXene layer reduced the zinc nucleation energy barrier and provided a more uniformly distributed electric field, resulting in low voltage hysteresis and excellent cycling stability with dendrite-free behaviors in zinc-ion batteries.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Water-Salt Oligomers Enable Supersoluble Electrolytes for High-Performance Aqueous Batteries

Shengying Cai et al.

Summary: This study reports a highly soluble ZnCl2/ZnBr2/Zn(OAc)(2) aqueous electrolyte, which breaks through the physical solubility limit by forming acetate-capped water-salt oligomers, enabling high-performance aqueous dual-ion batteries.

ADVANCED MATERIALS (2021)

Article Multidisciplinary Sciences

A rechargeable aqueous manganese-ion battery based on intercalation chemistry

Songshan Bi et al.

Summary: This study introduces a novel aqueous battery system that utilizes manganese ions in Mn metal/carbon composite anodes and inorganic or organic cathodes, aiming to improve discharge voltage in electrochemical energy storage systems. The system shows promising safety features and performance characteristics, making it a viable alternative for high voltage aqueous metal batteries.

NATURE COMMUNICATIONS (2021)

Article Nanoscience & Nanotechnology

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Longsheng Cao et al.

Summary: The study introduces an aqueous zinc battery with a solid-electrolyte interphase that enables excellent performance in various tests, demonstrating its potential for practical applications in energy storage.

NATURE NANOTECHNOLOGY (2021)

Article Chemistry, Multidisciplinary

A High-Voltage Zn-Organic Battery Using a Nonflammable Organic Electrolyte

Xuan Qiu et al.

Summary: A new organic electrolyte containing zinc trifluoromethanesulfonate salt and a mixed solvent has been proposed for zinc batteries, which shows high ionic conductivity, wide potential window, and dendrite-free zinc plating/stripping. A 2 V zinc//polytriphenylamine composite battery fabricated with the optimized electrolyte exhibits high performance and long cycle life even with high mass-loading of PTPAn in the cathode and high zinc-utilization.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive

Peng Sun et al.

Summary: The addition of glucose in ZnSO4 electrolyte can improve the performance of Zn ion batteries by suppressing Zn dendrite growth and side reactions, enhancing stability.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Review Chemistry, Physical

Design Strategies for High-Voltage Aqueous Batteries

Chongrui Dong et al.

Summary: This article summarizes recent progress on expanding the potential window of aqueous batteries, focusing on the design and modification of electrolytes, electrodes, and current collectors. Additionally, various alternative electrolytes are critically evaluated in terms of commercial prospects.

SMALL STRUCTURES (2021)

Article Electrochemistry

A perspective of ZnCl2 electrolytes: The physical and electrochemical properties

Xiulei Ji

Summary: Molten ZnCl2 hydrates are ionic liquids with intriguing physical and electrochemical properties, suitable for use as electrolytes in Zn metal batteries. Understanding the properties of molten ZnCl2 hydrates is crucial for designing high-performance electrolytes.

ESCIENCE (2021)

Review Chemistry, Physical

Micronanostructured Design of Dendrite-Free Zinc Anodes and Their Applications in Aqueous Zinc-Based Rechargeable Batteries

Bing-Feng Cui et al.

Summary: Aqueous zinc-based rechargeable batteries are promising due to their low cost, high safety, environmental friendliness, and high energy density, but the formation of zinc dendrites poses serious problems. Understanding the growth process of dendrites and suppressing their formation through strategies like micronanostructured design can help advance the development of high-performance dendrite-free zinc anodes.

SMALL STRUCTURES (2021)

Article Chemistry, Physical

Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes

Shunqiang Chen et al.

Summary: In this study, a localized high concentration electrolyte (LHCE) using 1,4-dioxane as the diluent and hydrogen-bond modulator is reported for aqueous zinc (Zn) metal batteries. The unique solvation structure in LHCE greatly boosts anion chemistries to induce fluorinated interphases on Zn anode and V2O5 cathode, achieving higher rate capabilities and Zn coulombic efficiencies without dendrite formation. This approach can be applied to adjust electrolyte physical properties and control interphase formation in other aqueous battery systems for practical applications.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Physical

The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free

Chong Zhang et al.

Summary: The highly concentrated aqueous electrolyte formula reported in this study mitigates hydrogen evolution by transforming water molecules into a more inert state. The electrolyte, primarily composed of ZnCl2 and LiCl salts, strengthens the O-H covalent bonds in water by reducing hydrogen bonding interactions and increasing Zn-Cl superhalides, resulting in an unprecedented >99.7% average Coulombic efficiency of zinc-metal anode. The electrolyte also enables dendrite-free zinc-metal anode plating/stripping cycles for 4000 hours at 2 mA cm(-2), demonstrating high Coulombic efficiency in full cells.

CARBON ENERGY (2021)

Review Chemistry, Multidisciplinary

Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials

Ming Li et al.

Summary: This study comprehensively summarizes the role of water molecules in rechargeable aqueous zinc-ion batteries, focusing on the influencing mechanisms from various perspectives. It also proposes new insights and actionable methods for the potential future directions in the design of high-performance AZIBs.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Multidisciplinary

The Applications of Water-in-Salt Electrolytes in Electrochemical Energy Storage Devices

Tingting Liang et al.

Summary: Water-in-salt electrolytes (WISEs) have gained attention for their non-flammability, environmental friendliness, and wider electrochemical stability window compared to conventional dilute aqueous electrolytes. They offer advantages such as high safety levels, manufacturing efficiency, and superior electrochemical performances when used in electrochemical energy storage devices. This review discusses the physicochemical and electrochemical properties of WISEs, summarizes research progress using different metal salts, and systematically explores their applications in various EES devices along with future perspectives.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries

Longtao Ma et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Physical

Molecular crowding electrolytes for high-voltage aqueous batteries

Jing Xie et al.

NATURE MATERIALS (2020)

Article Chemistry, Multidisciplinary

Thermal-Gated Polymer Electrolytes for Smart Zinc-Ion Batteries

Jiacai Zhu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Chemistry, Multidisciplinary

Design Strategies for High-Performance Aqueous Zn/Organic Batteries

Zhiwei Tie et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Physical

Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery

Shigang Chen et al.

ENERGY STORAGE MATERIALS (2020)

Review Chemistry, Physical

Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries

Ziyi Cao et al.

ADVANCED ENERGY MATERIALS (2020)

Article Chemistry, Physical

Water-in-Salt Electrolyte (WiSE) for Aqueous Batteries: A Long Way to Practicality

Lea Droguet et al.

ADVANCED ENERGY MATERIALS (2020)

Article Energy & Fuels

Realizing high zinc reversibility in rechargeable batteries

Lin Ma et al.

NATURE ENERGY (2020)

Editorial Material Chemistry, Physical

Toward High-Voltage Aqueous Batteries: Super- or Low-Concentrated Electrolyte?

Dongliang Chao et al.

Review Chemistry, Multidisciplinary

Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives

Tingting Wang et al.

ACS NANO (2020)

Article Chemistry, Multidisciplinary

Solvation Structure Design for Aqueous Zn Metal Batteries

Longsheng Cao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review

Tengsheng Zhang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Review Chemistry, Multidisciplinary

Dendrites in Zn-Based Batteries

Qi Yang et al.

ADVANCED MATERIALS (2020)

Review Materials Science, Multidisciplinary

Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries

Canpeng Li et al.

ENERGY & ENVIRONMENTAL MATERIALS (2020)

Review Chemistry, Physical

Uncharted Waters: Super-Concentrated Electrolytes

Oleg Borodin et al.

Review Chemistry, Physical

The rise of aqueous rechargeable batteries with organic electrode materials

Cuiping Han et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Multidisciplinary

Reverse Dual-Ion Battery via a ZnCl2 Water-in-Salt Electrolyte

Xianyong Wu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Energy & Fuels

Advances and issues in developing salt-concentrated battery electrolytes

Yuki Yamada et al.

NATURE ENERGY (2019)

Article Chemistry, Physical

A Room-Temperature Molten Hydrate Electrolyte for Rechargeable Zinc-Air Batteries

Chih-Yao Chen et al.

ADVANCED ENERGY MATERIALS (2019)

Article Multidisciplinary Sciences

Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation

Huayu Qiu et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)

Article Chemistry, Analytical

FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning

Reina Araceli Mauricio-Sanchez et al.

VIBRATIONAL SPECTROSCOPY (2018)