4.8 Review

Surface Modification of 2D Photocatalysts for Solar Energy Conversion

期刊

ADVANCED MATERIALS
卷 34, 期 23, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202200180

关键词

2D materials; electron transfer; molecular activation; photocatalysis; surface modification

资金

  1. King Abdullah University of Science and Technology (KAUST)

向作者/读者索取更多资源

This article introduces the research progress in 2D photocatalysts based on varied compositions and functions, as well as specific surface modification strategies. The fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systematically explored. Examples of various photocatalytic energy-conversion systems using 2D materials are described. Finally, the challenges and possible solutions for developing these 2D materials are discussed.
2D materials show many particular properties, such as high surface-to-volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge-transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy-conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据