4.8 Article

A Highly Conducting Polymer for Self-Healable, Printable, and Stretchable Organic Electrochemical Transistor Arrays and Near Hysteresis-Free Soft Tactile Sensors

期刊

ADVANCED MATERIALS
卷 34, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202200682

关键词

conducting polymers; organic electrochemical transistors; self-healing ability; stretchable conductive materials; tactile sensors

资金

  1. National Robotics Programme [W1925d0106]

向作者/读者索取更多资源

This study reports a highly stretchable and autonomic self-healable conducting film that exhibits outstanding stretchability, high electrical conductivity, and the ability to repair mechanical and electrical breakdowns. The film is utilized in a tactile sensor and an organic electrochemical transistor array, improving the practicality and shelf life of wearable electronics.
A stretchable and self-healable conductive material with high conductivity is critical to high-performance wearable electronics and integrated devices for applications where large mechanical deformation is involved. While there has been great progress in developing stretchable and self-healable conducting materials, it remains challenging to concurrently maintain and recover such functionalities before and after healing. Here, a highly stretchable and autonomic self-healable conducting film consisting of a conducting polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) and a soft-polymer (poly(2-acrylamido-2-methyl-1-propanesulfonic acid), PAAMPSA) is reported. The optimal film exhibits outstanding stretchability as high as 630% and high electrical conductivity of 320 S cm(-1), while possessing the ability to repair both mechanical and electrical breakdowns when undergoing severe damage at ambient conditions. This polymer composite film is further utilized in a tactile sensor, which exhibits good pressure sensitivity of 164.5 kPa(-1), near hysteresis-free, an ultrafast response time of 19 ms, and excellent endurance over 1500 consecutive presses. Additionally, an integrated 5 x 4 stretchable and self-healable organic electrochemical transistor (OECT) array with great device performance is successfully demonstrated. The developed stretchable and autonomic self-healable conducting film significantly increases the practicality and shelf life of wearable electronics, which in turn, reduces maintenance costs and build-up of electronic waste.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据