4.8 Article

Quasiplanar Heterojunction All-Polymer Solar Cells: A Dual Approach to Stability

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 32, 期 29, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202201828

关键词

all-polymer solar cells; polymer acceptors; polymer donors; quasiplanar heterojunction (Q-PHJ); stability

资金

  1. National Natural Science Foundation of China [21733005, 21975115]
  2. Shenzhen Fundamental Research Program [JCYJ20200109140801751, JCYJ20190809163011543, JCYJ20210324120010028]
  3. Guangdong Provincial Key Laboratory of Catalysis [2020B121201002]
  4. Guangdong Innovative and Entrepreneurial Research Team Program [2016ZT06G587]
  5. Shenzhen Sci-Tech Fund [KYTDPT20181011104007]

向作者/读者索取更多资源

The quasiplanar heterojunction (Q-PHJ) structure with a bilayer morphology shows improved efficiency and stability in organic solar cells. By using synthesized polymer donors and acceptors, high-performance Q-PHJ all-polymer solar cells (all-PSCs) with reliable stability have been achieved.
In addition to efficiency, stability is another key factor in developing organic solar cells. The quasiplanar heterojunction (Q-PHJ) structure, combining two pure layers as major and tiny nanoscale bulk heterojunction (BHJ) at interface, demonstrates superior device stability compared with BHJ devices. In this contribution, the polymer donor, PBQx-H-TF, and configurationally defined polymeric acceptor, PBTIC-gamma-TSe are synthesized and used to fabricate bilayer devices by orthogonal solvents, the corresponding Q-PHJ all-polymer solar cells (all-PSCs) deliver reliable stability with high efficiency. An encouraging PCE of 15.77% is achieved, which is the highest one among Q-PHJ all-PSCs with real-bilayer structure. There is a major improvement over the 13.91% PCE in the BHJ device, and the carrier transport performance is improved substantially following the reduction of recombination in the Q-PHJ all-PSCs. Benefiting from the bilayer morphology, the stability of Q-PHJ all-PSCs has been greatly enhanced over that of the BHJ devices. The charge recombination process is also more serious in the aging BHJ compared with the aging Q-PHJ all-PSCs. This work inspires the application of Q-PHJ in the preparation of high-efficient all-PSCs, but also provides guidance on the improvement of device stability from a dual approach of material and device engineering aspects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据