4.7 Article

Process knowledge-based random forest regression for model predictive control on a nonlinear production process with multiple working conditions

期刊

ADVANCED ENGINEERING INFORMATICS
卷 52, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.aei.2022.101561

关键词

Model predictive control; Knowledge-based random forest; Nonlinear process; Process industry

资金

  1. National Natural Science Foundation of China [51975521]

向作者/读者索取更多资源

This study proposes a predictive controller with a control process knowledge-based random forest (RF) model, which effectively incorporates control process knowledge into modeling for better control performance. The proposed methods demonstrate more accurate anticipated controlled-variable responses, better set-point tracking, and disturbance rejection capability against benchmarks.
In process industry, predictive control approaches have been widely used for nonlinear production processes. Practically, the predictor in a predictive controller is extremely important since it provides future states for the optimization problem of controllers. The conventional predictive controller with precise mathematical predictors approximating the state space of physical systems is difficult and time-consuming for nonlinear production processes, and it performs poorly over a wide range of working conditions and with significant disturbances. To address the challenges, the trend of applying artificial intelligence emerges. However, the industrial processspecific knowledge is ignored in most cases. In this study, a predictive controller with a control process knowledge-based random forest (RF) model is proposed. Specifically, working data are clustered at first to handle diverse working conditions. Then, a process knowledge-based forest predictor, namely MIW-RF model with a redesigned cascading RF structure, is proposed to incorporate control process knowledge into modeling. Thus, future states of controlled variables could be more accurately acquired for the optimizer. A simplified version of the predictive model is also developed with quick model training and updating. The proposed predictive methods are finally introduced into the controller design. According to the empirical results, the proposed methods deliver a better control performance against benchmarks, including more accurate anticipated controlled-variable responses, better set-point tracking and disturbance rejection capability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据