4.7 Article

A general design strategy for thermoelectric interface materials in n-type Mg3Sb1.5Bi0.5 single leg used in TEGs

期刊

ACTA MATERIALIA
卷 226, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.117616

关键词

Thermoelectric interface materials; Mg3Sb1.5Bi0.5; bonding strength; interfacial resistivity; interfacial thermal stability

资金

  1. National Key Project of Research and Development Plan [2018YFB0703600]
  2. NSFC Program [51872133]
  3. Guangdong Innovative and Entrepreneurial Research Team Program [2016ZT06G587]
  4. Shenzhen Key Projects of Long-Term Support Plan [2020 09251640210 02]
  5. Guangdong Provincial Key Laboratory Program-Department of Science and Technology of Guangdong Province [2021B1212040 0 01]
  6. Tencent Foundation-XPLORER PRIZE

向作者/读者索取更多资源

This study proposes an alloying approach to generate thermoelectric interface materials (TEiMs) for improved reliability of thermoelectric power generators (TEGs). Through careful selection of matrix elements and optimization of interface design strategies, ternary alloys with excellent performance and thermal stability were obtained.
The reliability of thermoelectric power generators (TEGs) depends heavily on the contact interface between thermoelectric (TE) materials and electrodes. We propose a general alloying approach for generating TE interface materials (TEiMs) for n-type Mg3Sb1.5Bi0.5 systems. The TEiM serves as a metallisation layer or barrier that precedes the soldering assembly. We first selected Fe from 15 elements as the matrix element considering the criteria of high bonding strength and low interfacial resistivity. Following the principles of high bonding propensity, coefficient of thermal expansion (CTE) matching, diffusion passivation, and dopant inactivation, two types of ternary alloys (Fe7Mg2Cr and Fe7Mg2Ti) with shear strengths (crs) of > 40 MPa and the specific contact resistivities (rho(c) ) of < 5 mu omega cm(2) were obtained. Furthermore, the thermal stability of the TEiM/Mg3Sb1.5Bi0.5 contact interface was investigated employing aging treatment. The contact interface exhibited high shear strength (sigma(s) > 30 MPa ), low specific contact resistivity (rho(c) < 10 mu omega cm(2)), and excellent thermal stability after aging treatment at 400 ? for 15 days. The general TEiM design strategy presented herein will contribute to further optimization of contact interfaces in TEG devices. (C) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据