4.5 Article

Control of water intake by a pathway from the nucleus of the solitary tract to the paraventricular hypothalamic nucleus

期刊

APPETITE
卷 172, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.appet.2022.105943

关键词

Drinking; Thirst; GLP-1; PVH; NTS

资金

  1. National Institutes of Health [DK107500]

向作者/读者索取更多资源

Several brain areas participate in thirst and fluid intake control, but the interaction and specific roles of these circuits are not fully understood. This study investigates the effect of central GLP-1 receptor activation on water intake. It suggests that the PVH is a site of action for GLP-1 receptor activation in the inhibition of water intake, but a counterbalancing pathway may exist.
Several brain areas have been shown to participate in thirst and control of fluid intake. An understanding of how these circuits interact, and their roles in the activation, maintenance, and termination of fluid intake remains incomplete. Central glucagon-like peptide-1 (GLP-1) receptor activation appears to be an important part of the termination of drinking, but the site(s) of action for this suppression has not yet been determined. In an attempt to use GLP-1 responsiveness as a means to screen targets of hindbrain cells that participate in the termination of thirst and the resultant water intake, we injected the GLP-1 receptor agonist exendin-4 (Ex-4) into three brain areas known to express GLP-1 receptors, and measured subsequent water intake. Ex-4 reduced water consumption when injected into the paraventricular hypothalamic nucleus (PVH) and nucleus of the solitary tract (NTS), but not when injected into the nucleus accumbens (NAc). Using the effective response after injection into the PVH as a guide, we examined the connection between the NTS - the site of endogenous central GLP-1 production - and the PVH. Retrograde tracing combined with Fos immunohistochemistry suggested intake-induced activity in PVH-projecting NTS cells. To test the hypothesis that this pathway is important in the termination of drinking, we chemogenetically activated PVH-projecting hindbrain cells. Interestingly, activation of this population of cells increased water intake, calling into question the heterogeneity of the pathway with respect to the control of fluid intake. Taken together, we conclude that the PVH is a site of action for GLP-1 receptor activation in the inhibition of water intake, but suspect that endogenous GLP-1 in NTS-to-PVH projections may be counterbalanced by a parallel pathway that either activates or maintains already activated water intake.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据