4.8 Article

Van der Waals Heteroepitaxy of Air-Stable Quasi-Free-Standing Silicene Layers on CVD Epitaxial Graphene/6H-SiC

期刊

ACS NANO
卷 16, 期 4, 页码 5920-5931

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c11122

关键词

2D materials; silicene; graphene; van der Waals heterostructure; molecular beam epitaxy; nucleation and growth; kinetic Monte Carlo

资金

  1. European Community [GA 823728]

向作者/读者索取更多资源

This study investigates the growth of silicon on a chemically vapor deposited epitaxial graphene substrate and shows that the control of almost defect-free graphene is crucial for the growth of silicene. It is found that large silicene sheets can be formed at low coverages, while dendritic islands of silicon appear at higher coverages.
Graphene, consisting of an inert, thermally stable material with an atomically flat, dangling-bond-free surface, is by essence an ideal template layer for van der Waals heteroepitaxy of two-dimensional materials such as silicene. However, depending on the synthesis method and growth parameters, graphene (Gr) substrates could exhibit, on a single sample, various surface structures, thicknesses, defects, and step heights. These structures noticeably affect the growth mode of epitaxial layers, e.g., turning the layer-by-layer growth into the Volmer-Weber growth promoted by defect-assisted nucleation. In this work, the growth of silicon on chemical vapor deposited epitaxial Gr (1 ML Gr/1 ML Gr buffer) on a 6H-SiC(0001) substrate is investigated by a combination of atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy measurements. It is shown that the perfect control of full-scale almost defect-free 1 ML Gr with a single surface structure and the ultraclean conditions for molecular beam epitaxy deposition of silicon represent key prerequisites for ensuring the growth of extended silicene sheets on epitaxial graphene. At low coverages, the deposition of Si produces large silicene sheets (some hundreds of nanometers large) attested by both AFM and SEM observations and the onset of a Raman peak at 560 cm(-1), very close to the theoretical value of 570 cm(-1) calculated for free-standing silicene. This vibrational mode at 560 cm(-1) represents the highest ever experimentally measured value and is representative of quasi-free-standing silicene with almost no interaction with inert nonmetal substrates. From a coverage rate of 1 ML, the silicene sheets disappear at the expense of 3D Si dendritic islands whose density, size, and thickness increase with the deposited thickness. From this coverage, the Raman mode assigned to quasi-free-standing silicene totally vanishes, and the 2D flakes of silicene are no longer observed by AFM. The experimental results are in very good agreement with the results of kinetic Monte Carlo simulations that rationalize the initial flake growth in solid-state dewetting conditions, followed by the growth of ridges surrounding and eventually covering the 2D flakes. A full description of the growth mechanism is given. This study, which covers a wide range of growth parameters, challenges recent results stating the impossibility to grow silicene on a carbon inert surface and is very promising for large-scale silicene growth. It shows that silicene growth can be achieved using perfectly controlled and ultraclean deposition conditions and an almost defect-free Gr substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据