4.8 Article

DNA Tension Probes Show that Cardiomyocyte Maturation Is Sensitive to the Piconewton Traction Forces Transmitted by Integrins

期刊

ACS NANO
卷 16, 期 4, 页码 5335-5348

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c04303

关键词

DNA sensors; rupture probes; integrin forces; cardiomyocyte's maturation; substrate stiffness; pN forces; integrin mechanotransduction

资金

  1. NIH NIGMS [R01GM124472, 1R01GM131099]
  2. NHLBI [R01HL142866, R01HL143065, R01HL147270, R01HL157363]
  3. AHA [20TPA35260085]
  4. Department of Defense [12901705 (PR191598)]

向作者/读者索取更多资源

Cardiac muscle cells respond to mechanical stimuli through integrin receptors, influencing their differentiation and development. This study demonstrates that defined pN integrin forces can trigger functional maturation and enhance sarcomeric alignment and multinucleation in cardiac muscle cells.
Cardiac muscle cells (CMCs) are the unit cells that comprise the heart. CMCs go through different stages of differentiation and maturation pathways to fully mature into beating cells. These cells can sense and respond to mechanical cues through receptors such as integrins which influence maturation pathways. For example, cell traction forces are important for the differentiation and development of functional CMCs, as CMCs cultured on varying substrate stiffness function differently. Most work in this area has focused on understanding the role of bulk extracellular matrix stiffness in mediating the functional fate of CMCs. Given that stiffness sensing mechanisms are mediated by individual integrin receptors, an important question in this area pertains to the specific magnitude of integrin piconewton (pN) forces that can trigger CMC functional maturation. To address this knowledge gap, we used DNA adhesion tethers that rupture at specific thresholds of force (similar to 12, similar to 56, and similar to 160 pN) to test whether capping peak integrin tension to specific magnitudes affects CMC function. We show that adhesion tethers with greater force tolerance lead to functionally mature CMCs as determined by morphology, twitching frequency, transient calcium flux measurements, and protein expression (F-actin, vinculin, alpha-actinin, YAP, and SERCA2a). Additionally, sarcomeric actinin alignment and multinucleation were significantly enhanced as the mechanical tolerance of integrin tethers was increased. Taken together, the results show that CMCs harness defined pN integrin forces to influence early stage development. This study represents an important step toward biophysical characterization of the contribution of pN forces in early stage cardiac differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据