4.8 Article

Constructing a Pt/YMn2O5 Interface to Form Multiple Active Centers to Improve the Hydrothermal Stability of NO Oxidation

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 14, 期 18, 页码 20875-20887

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c01371

关键词

NO oxidation; interface; hydrothermal stability; multiple active centers; oxygen vacancies

资金

  1. National Natural Science Foundation Project in China [21972098]

向作者/读者索取更多资源

The study focused on the hydrothermal stability of NO oxidation reaction for the practical application of diesel oxidation catalysts. By constructing a metal/oxide interface and using YMO catalyst with excellent thermal stability, a Pt/YMO-LA catalyst with good NO oxidation performance was successfully prepared.
The hydrothermal stability of NO oxidation is the key to the practical application of diesel oxidation catalysts in diesel engines, which in the laboratory requires that NO activity does not decrease after aging for 10 h with 10% H2O/air at 800 ??C. On the one hand, the construction of a metal/oxide interface can lead to abundant oxygen vacancies (Ov), which compensate for the loss of activity caused by the aggregation of Pt particles after aging. On the other hand, YMn2O5 (YMO) has excellent thermal stability and NO oxidation capacity. Therefore, a Pt/YMn2O5-La-Al2O3 (Pt/ YMO-LA) catalyst was prepared by the impregnation method. The support of the catalyst, YMn2O5-La-Al2O3 (YMO-LA), was obtained by mixing high specific surface LA and YMO ball-milling. Under laboratory-simulated diesel exhaust flow, the NO oxidation performance of Pt/YMO-LA did not decrease after hydrothermal aging. Combining high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and oxygen temperature-programmed desorption (O2-TPD), the Pt/YMn2O5 interface was formed after hydrothermal aging, and the increased Ov can provide reactive oxygen to Pt and YMO. The cooperative catalysis of multiple active centers composed of Pt, YMO, and Ov is the crucial factor to maintain the NO oxidation performance. In addition, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTs) show that an increase in Ov is beneficial to the adsorption and desorption of more nitrate and nitrite intermediates, thus achieving the hydrothermal stability of NO oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据