4.8 Article

Surface-Functionalized Au-Pd Nanorods with Enhanced Photothermal Conversion and Catalytic Performance

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 14, 期 15, 页码 17259-17272

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c00221

关键词

Au-Pd nanorods; PDA; photothermal conversion; surface plasmon; 4-nitrophenol

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [182087777-SFB 951]

向作者/读者索取更多资源

Bimetallic nanostructures can generate a new type of photo-enhanced nanoreactors by utilizing photo-generated heat to accelerate catalytic reactions. The study demonstrates that the photothermal conversion of Au-Pd nanorods can be improved by coating with polydopamine or TiO2, resulting in increased reaction rates.
Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据